
Nano-particle Transition Matrix code

Release Notes

Report for M7.00

G. La Mura, G. Mulas

January 2024



Contents

Scope of the document . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Aim of the project 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Project break-down . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Project status . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Release description 7

2.1 Code migration . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 New code features . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Code performance . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Instructions for testing 12

3.1 Set up operations . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Building the code . . . . . . . . . . . . . . . . . . . . . 12

3.2 Execution of the sphere case . . . . . . . . . . . . . . . . . . 14

3.3 Execution of the cluster case . . . . . . . . . . . . . . . . . . 15

3.4 Testing with docker/singularity . . . . . . . . . . . . . . . 16

3.5 Comparing results . . . . . . . . . . . . . . . . . . . . . . . . . 17

1



Scope of the document

This document is provided along with the release of the NP-TM code suite

as a quick report on the status of the project. The aim of this document is

to give an overview of the project goals, to provide a quick guide to navigate

the progress achieved with respect to milestones and to a set of fundamental

instructions to perform tests of the code functionality. More detailed doc-

umentation, explaining the structure of the code and the role of its main

components (data structures, functions and variables) is given in the form of

doxygen-handled inline documentation.

This document is organized in chapters:

- Chapter 1 presents the general scope of the project and a description of its

milestones;

- Chapter 2 provides a description of the current code release and discusses

how the project guidelines were implemented;

- Chapter 3 finally gives instructions on how to test the code release in its

current form.
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Chapter 1

Aim of the project

1.1 Introduction

This project aims at implementing High Performance Computing (HPC)

strategies to accelerate the execution of the Nano-Particle Transition Matrix

code, developed by Borghese et al. (2007), to solve the scattering and absorp-

tion of radiation by particles with arbitrary geometry and optical properties.

The goal is to migrate the original code, written in FORTRAN 66, to a mod-

ern programming language, able to access new hardware technologies, thus

substantially reducing the amount of time required for calculations through

the use of parallel code execution handled by multi-core computing units.

The problem of radiation absorption and scattering has a large variety of

applications, ranging from Astrophysics of the interstellar medium (ISM) and

(exo)planetary atmospheres, all the way to material investigation through op-

tical techniques and nano-particle handling by means of optical tweezers. In

spite of the large impact of such problems on both scientific and technological

applications, the theoretical framework of radiation/matter interactions has

mostly been treated under the assumption of simplifying conditions, such as

single radiation fields interacting with spherical particles.

Dealing with more realistic cases is only possible through numerical cal-

culations. These can be broadly distinguished in the Discrete Dipole Approx-

imation (DDA) based approach (Draine & Flatau 1994), which subdivides a

general material particle in a properly chosen combination of dipoles, thereby
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solving their interaction with the radiation field, and the Transition Matrix

(TM) solutions (Borghese et al. 2007) which, on the contrary, take advantage

from the expansion of the radiation fields in multi-polar spherical harmonics

to create a set of boundary conditions that connect the properties of the

incident and of the scattered radiation at the surface of the interacting par-

ticle layers. In the latter case, the particle is approximated as a collection of

spherical sub-particles that act as a mathematical operator connecting the

properties of the incident and scattered field.

The TM method has the main advantage of creating a unique link be-

tween the incident and the scattered radiation fields, offering a solution that

is valid for any combination of incident and scattered directions and at vari-

ous distance scales, from within the particle itself, all the way up to remote

regions. While the TM itself is computed numerically, it then provides an

analytical expression of incident and scattered fields for any arbitrary inci-

dent wave, enabling (relatively) easy arbitrary averages over combinations

and relative orientations of incident fields and the complex scattering par-

ticle. E. g. it is easy to account for different partial alignment conditions,

with no need to repeat the calculation of the TM.

Conversely, DDA calculations need to be entirely solved for any combination

of incident and scattered radiation fields and they require a different descrip-

tion of the particle, depending on the dimension scale they apply to. As a

consequence, the TM method is largely preferable for the investigation of

all types of integrated effects, thus naturally covering also the dynamic and

thermal effects of the radiation-particle interaction.

While TM based solutions are ideal to solve the scattering problem in all

circumstances where multiple scales and directions need to be accounted for,

the calculation of the Transition Matrix for realistic particles is a computa-

tionally demanding task. This project takes on the challenge of porting the

original algorithms to modern hardware, in order to substantially reduce the

computational times and allow users to model more complicated and realistic

particle structures, and/or large populations of different particles, in shorter

execution times.
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1.2 Project break-down

We can broadly divide the project in three main stages, namely corresponding

to:

1. code porting to C++ (currently being finalised)

2. implementation of parallel algorithms

3. deployment of general radiation/particle interaction solver

These three stages are associated with an equal number of Key Performance

Indicators (KPI) which consist in code releases with enhanced computational

abilities. The first project stage, addressed by the current release, aims at

migrating the original code to a modern language. This allows to set up an

execution framework that can be configured by modern compilers and make

use of hardware resource and speed optimization features, such as dynamic

memory management.

The first stage also provides the necessary framework to estimate runtime

system requirements and to perform a detailed profiling of the calculation, in

order to lay down the most convenient strategy for the subsequent paralleliza-

tion stage, and a fundamental inline documentation, handled by doxygen, to

describe in further detail every code component.

1.3 Project status

We refer to the current release of the project as NP TMcode-M7.0, since

it is the first (pre-evaluation) code release addressing the targets of the

project Milestone 7 (namely a consistent re-implementation of the sphere

and cluster calculation cases, able to reproduce the legacy results for a set of

development cases with a profiling analysis).1 This code has been designed

to emulate as closely as possible the work-flow of the original FORTRAN

1The code included in this release performs a full calculation reproducing the original

sphere and cluster programs and includes a development version of the trapping pro-

gram. The code is built with integration of profiling tools, but a full profiling analysis is

expected by the end of February 2024.

5



version to allow for direct performance comparison and easy identification of

calculation bottle-necks.

In addition to reproducing the legacy results of the development test

cases, the C++ implementation already offers some advantages with respect

to the original code. The most important ones are:

• the possibility to use command line arguments to choose input and

output paths

• the use of classes in place of common data blocks

• runtime evaluation of memory requirements, and consequent dynamical

allocation of variables, whose sizes are not hard-coded as in the original

code

• optional output to standard binary file formats (HDF5), enabling cross-

platform portability and comparison of calculations

The first three features allow users to run the calculation of different scat-

tering problems without having to adjust the source code. The last feature,

instead, adds the possibility to redirect part of the code output towards data

structures that can be inspected and possibly converted by external software

tools. This also makes it possible to analyse results in binary formats on

a different platform from the one in which the calculation was performed,

regardless of endianness, with the only requirement that the HDF5 library is

available on both.
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Chapter 2

Release description

2.1 Code migration

NP TMcode-M7.0 is the first release of the Nano-particle Transition Matrix

Project code, funded under the project CN-HPC, Big Data and Quantum

Computing CN 00000013, Spoke 3 ”Astrophysics and Cosmos Observations”

(CUP C53C22000350006). The aim of this release is to verify the repro-

ducibility of the results obtained by the original FORTRAN 66 code in a

new version, implemented in a more recent programming language.

The language chosen for the new implementation is C++, due to its op-

timal balance between low-level hardware control, execution speed, language

diffusion and dynamic resource management at runtime. The goal of this

first release is to provide a complete suite of tests that can be used to run

both the FORTRAN and C++ versions of the code, to verify the consistency

of the results and to assess the overall code performance.

This release includes the C++ source code and its inline documentation,

together with a collection of essential test cases, made up by the required

input and the FORTRAN code that has been explicitly configured to run

them. In order to execute this test suite, the user needs a set of tools and

libraries, required to build the binary executable files, which have been also

documented in mark-down formatted README files. Given the typical lim-

itations of source code distributions, which require tools to build an exe-

cutable version of the code that, so far, have only been tested under some
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Linux and macOS system architectures, the release also includes a set of pre-

configured test suites, distributed in the form of docker1 and singularity2

container images, containing precompiled binary executables along with a

minimal Linux system in which they can be run.

2.2 New code features

The goal of the NP TMcode-M7.0 code release is to set up a working im-

plementation of the scattering problem solution for the cases of radiation

impinging on a single sphere (with arbitrary layer structure) and on a cluster

of spheres in C++, obtaining consistent results with respect to the original

programs. The achievement of this goal can be verified by executing the

original FORTRAN code and the new C++ version on the same input files.

Details on how to perform these operations are laid down in Chapter 3. In

this section, instead, we discuss some of the features that were added to the

code in the migration stage.

Indeed, due to the limited scalability of FORTRAN 66, with respect to

C++, the original code has its input and output configuration defined within

the source (i. e. the names of input and output files are hard-coded, as well

as the maximum orders of the truncated expansions). As a consequence,

any possible change in the input parameters, requires consequent changes in

the FORTRAN source files, which subsequently need to be compiled again,

before execution. In C++, this limitation can be overcome by the combina-

tion of command-line arguments, which allow to choose different input and

output configurations, and dynamic memory management, which, instead,

gives the code the opportunity to calculate the amount of necessary system

resources (chiefly the memory space that needs to be used) after parsing the

input, thus relieving the user from the burden of computing the hardware

requirements depending on the desired degree of complexity and accuracy.

In addition to the possibility of switching between different input and

output paths and to change the calculation parameters without having to

modify the source code, NP TMcode-M7.0 introduces a wrapper class that

1see www.docker.com
2see sylabs.io/singularity
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allows to perform I/O operations on binary files using the HDF5 format. This

feature, which is currently included as an optional possibility, provides the

opportunity to read and write calculation results in a standard format that

may be used by external tools to perform tasks such as, for instance, plotting

and conversion, with complete portability across any platform supporting

HDF5. These represent a fundamental aspect, in order to obtain advanced

products like publication quality tables and plots, and the platforms for post-

production analysis are completely decoupled from the platforms on which

the codes are run for production.

2.3 Code performance

When compiled with the same optimisation options (e. g. -O3 for both

FORTRAN and C++), corresponding codes consistently take the same time

to run, showing that the mere porting to C++ did not, in itself, imply

any significant performance penalty. The minimal difference can be entirely

ascribed to the added functionalities (dynamic memory handling, terminal

output, and additional HDF5 binary output).

As an example, we here include excerpts of the profiling we ran for a

calculation with a cluster of 48 spheres, both for the FORTRAN and C++

versions of the code. The execution of the FORTRAN version yielded the

following profiling report:

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls s/call s/call name

96.35 107.18 107.18 181 0.59 0.59 lucin_

2.89 110.40 3.22 26133685 0.00 0.00 ztm_

0.47 110.92 0.52 40868352 0.00 0.00 r3jjr_

0.07 111.00 0.08 91953792 0.00 0.00 cgev_

0.05 111.06 0.06 181 0.00 0.02 cms_

0.04 111.11 0.05 213037 0.00 0.00 rbf_
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0.04 111.16 0.05 _init

0.03 111.19 0.03 1112064 0.00 0.00 ghit_

0.03 111.22 0.03 1 0.03 111.19 MAIN__

0.01 111.23 0.01 213218 0.00 0.00 msta2_

0.01 111.24 0.01 181 0.00 0.00 hjv_

... CALLS TO FUNCTIONS BELOW SAMPLING THRESHOLD ...

0.00 111.24 0.00 1 0.00 0.00 wmamp_

Conversely, the C++ implementation resulted in:

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls s/call s/call name

97.32 120.04 120.04 181 0.66 0.66 lucin()

1.39 121.75 1.71 183 0.01 0.01 ztm()

0.51 122.38 0.63 27245568 0.00 0.00 ghit()

0.29 122.74 0.36 40868352 0.00 0.00 r3jjr()

0.13 122.90 0.16 91953792 0.00 0.00 cgev()

0.13 123.06 0.16 181 0.00 0.01 cms()

0.10 123.18 0.12 1 0.12 123.29 cluster()

0.04 123.23 0.05 _init

0.02 123.26 0.03 213037 0.00 0.00 rbf()

0.02 123.28 0.02 213218 0.00 0.00 msta2()

0.02 123.30 0.02 204349 0.00 0.00 rnf()

0.01 123.31 0.01 1778584 0.00 0.00 dconjg()

0.01 123.32 0.01 213218 0.00 0.00 msta1()

0.01 123.33 0.01 181 0.00 0.00 apc()

0.01 123.34 0.01 181 0.00 0.00 scr2()

... CALLS TO FUNCTIONS BELOW SAMPLING THRESHOLD ...

0.00 123.34 0.00 1 0.00 0.00 ~C1_AddOns()

It can be easily verified that the two versions have comparable execution

times, with C++ taking slightly longer to run (123.34s vs. the 111.24s of the

FORTRAN implementation), due to the additional overheads of dynamic
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memory management and more verbose terminal output. Apart from this,

the two versions have very similar function call footprints, except for the

fastest calls and some compilation related subtleties.

As it stands out clearly in this profiling analysis, the largest computa-

tional effort (taking more than 95% of the execution time) is the inversion of

the Transition Matrix, performed by the lucin function. This will therefore

be the natural target of parallel code optimization.
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Chapter 3

Instructions for testing

3.1 Set up operations

Testing NP TMcode-M7.0 can be achieved through two main approaches. The

first is to obtain a local install, building the source code on the user’s own ma-

chine. The second is to use a pre-built image, choosing between the docker

and the singularity implementations. This section deals with testing the

code release on a local machine. Detailed instructions on how to use pre-built

images, instead, are given in § 3.4, later on.

The first operation needed to build and execute the code is to replicate

the project release from the gitLab repository. We assume that this step has

been already performed, since the present document is distributed as part

of the release bundle. The following steps, therefore, are just building and

execution.

3.1.1 Building the code

To build the code, the user needs a set of compilers and some libraries. The

recommended set up includes an up to date installation of the GNU Compiler

Collection (gcc), of the GNU make builder, a FORTRAN compiler (again,

the recommended option is to rely on GNU ’s gfortran) and the doxygen

document manager. An optional dependency is a working LATEXdistribution

with recommended package set-up, in order to build the full PDF documenta-

tion. If the aforementioned system requirements are met, building the code
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just requires to go in the src folder:

~/np_tmcode> cd src

if necessary to edit (with any text editor) the make.inc file (or to override

its settings by defining corresponding environment variables), which sets the

default compilers, compiler options, paths to the HDF5 include files and li-

braries, and then to issue the make command:

~/src> make

If multiple cores are available, a quicker build execution can be obtained by

issuing

~/src> make -j

The build process will take care of building all of the FORTRAN and

C++ codes, placing the relevant binary files in a directory structure based in

the build folder, located at the same level of the src folder in the np tmcode

directory structure.

If desired, there is the additional option to build the code inline docu-

mentation by issuing:

~/src> make docs

which will generate a folder named doc/build under the the np tmcode di-

rectory, with two additional sub-folders, respectively named html and latex.

The html folder contains a browser formatted version of the inline code doc-

umentation, starting from a file named index.html. The latex folder, on

the other hand, contains the instructions to build a PDF version of the docu-

ments, using LATEX, by issuing the further make command (after the previous

”make docs” step):

~/src> make -C ../doc/build/latex
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3.2 Execution of the sphere case

Once the build process has been completed, the code is ready to be run on

the available test cases. The configuration files and the expected FORTRAN

output files are collected in a folder named test data under np tmcode. To

run the FORTRAN code on the case of the single sphere, move to the sphere

binary folder:

~/src> cd ../build/sphere

then run the FORTRAN configuration program:

~/sphere> ./edfb_sph

The edfb sph program looks for the problem configuration data in a file

named DEDFB1 and located in the test data/sphere folder, then it writes

a formatted output file named OEDFB and a binary configuration file named

TEDF in the current working directory. After checking for the existence of

these files, the calculation of the scattering process, according to the FOR-

TRAN implementation, can be executed by issuing:

~/sphere> ./sph

The sph program gets its input from a file named DSPH in the test data folder.

Its execution provides essential feedback on the status of the calculation and

writes the results in a binary file named TPPOAN and a text file named OSPH.

The calculation executed in FORTRAN can be replicated in C++ simply

by invoking:

~/sphere> ./np_sphere

The np sphere program adopts the default behaviour of looking for the same

input data as the FORTRAN code and writing the same type of output files,

but appending a c prefix to its output. Optionally, it can be run as:

~/sphere> ./np_sphere PATH_TO_DEDFB PATH_TO_DSPH OUTPUT_FOLDER

1Explanations on the structure of the input data file are given in the README.md file

stored in the test data folder.
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to let it get input and write output other than the default behaviour.

After the execution of the FORTRAN and the C++ versions, the final

outcome can be compared by checking the contents of the OSPH and the

c OSPH files (see § 3.5 for suggestions on how to compare files).

3.3 Execution of the cluster case

Execution of the cluster calculation is very similar to the sphere case. The

first step is to move to the cluster folder:

~/sphere> cd ../cluster

then run the FORTRAN configuration program:

~/cluster> ./edfb_clu

followed by the FORTRAN calculation:

~/cluster> ./clu

This command sequence will read the default cluster development case, which

is a quick calculation of the scattering problem for 2 scales on a cluster made

up by 4 spheres. As a result, the two binary files TEDF and TPPOAN will be

written to the current working directory, together with the text file OCLU

containing the results of the calculation.

In a similar way, the C++ calculation that replicates this process can be

executed by issuing:

~/cluster> ./np_cluster

np cluster will look for the same configuration files used by edfb clu and

clu, namely the DEDFB and DCLU files stored in test data/cluster, and

write c -prefixed output files. The results can be compared by looking in the

OCLU and c OCLU files (see § 3.5).

To further test the code, the test data/cluster contains two additional

cluster configuration files, composed by 24 and 48 spherical units each. The

FORTRAN code is not able to handle these files, because it would require
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modifying the source code to read them. Such modifications where tested

on the development machine and the results were bundled in the release as

the files named OCLU 24 and OCLU 48 in the test data/cluster folder. The

C++ implementation, on the contrary, can directly handle these, by running:

~/cluster> ./np_cluster PATH_TO_DEDFB_XX PATH_TO_DCLU_XX \

OUTPUT_PATH

3.4 Testing with docker/singularity

The project release contains a containers directory, which in turn con-

tains docker and singularity subdirectories. These subdirectories contain

configuration files which can produce working container images using either

container system, which is assumed to be installed on the testing machine.

Refer to the installation instructions on the docker and singularity web sites

to obtain and install one of these, if needed. The free versions are perfectly

adequate for testing NP TMcode-M7.0. The instructions to recreate local im-

ages are given in the README.md files in the respective subdirectories. More-

over, a publicly accessible docker image can also be obtained directly from

Docker hub, under the name of gmulas/np-tmcode-run, and a pre-built sin-

gularity image file np-tmcode-run.sif is available under the singularity

subdirectory. Both images include also the standard HDF5 tools, which can

be used to inspect the binary output files in HDF5 format.

To test the NP TMcode-M7.0 in the docker image, one can start an in-

teractive shell in the container image instance. This can be achieved either

using the docker graphical user interface or using the command line, such as

e. g.:

~/docker> docker run -it gmulas/np-tmcode-run:M7.00 /bin/bash

This will start an instance of the docker image, and open an interactive

bourne shell within it. Then, one can go into the installation folder of np-

tmcode inside the container

root@74a5e7e7b79d:~# cd /usr/local/np-tmcode/build
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and from there proceed as in Sections 3.2,3.3, and 3.5. Bear in mind that,

unless a persistent docker volume was created (see docker reference docu-

mentation to do this), and mounted, on the docker image instance, whatever

files are created inside the running instance are lost when the instance is

closed, i. e., in the example above, upon exiting the shell. Whatever one

wants to keep should be copied out of the running instance before closing it,

e. g. using docker cp commands.

To test the NP TMcode-M7.0 in the singularity image, one can make

use of the feature of singularity that automatically mounts the user’s home

directory in the container image, and directly run the executables in the

image as, e. g.

~/singularity> COMPLETE_PATH/np-tmcode-run.sif clu

where COMPLETE PATH above is supposed to be the complete path to the

singularity image file. One can therefore proceed as in Sections 3.2, 3.3,

and 3.5, just running the executable files via the singularity image file, instead

of directly from the host machine. The only caveat is that the FORTRAN

binaries expect to read their input data from a test data folder located two

levels above the singularity execution directory.

3.5 Comparing results

The comparison of results for a realistic case is, in general, not straight-

forward. In comparing the output of FORTRAN 66 and C++-based cal-

culations, several effects may introduce artifacts that result in more or less

significant differences. The output of the code, indeed, includes both unfor-

matted binary files as well as formatted text files. Due to the facts that only

the code is able to read its proprietary binary format and that the formatted

output is a following step, it makes perfect sense to compare the results saved

in formatted files, since they are derived from the binary ones.

However, comparison of formatted text files can still be a hard task, due

to the large amount of information included in each file and to the possibility

of observing numeric noise. This noise arises on values that are negligible

with respect to the typical orders of magnitude probed by a given level of
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approximation. A similar effect may also be observed when executing the

same code on different hardware architectures. In order to make the task

of comparing the output of the sphere and cluster calculations between

the FORTRAN and the C++ versions easier, NP TMcode-M7.0 includes an

executable python3 script named pycompare.py. The scope of this script

is to parse the formatted output files produced by the FORTRAN and the

C++ implementations, to check for the consistency of the file structures and

to verify the coincidence of significant numeric values. This script is located

in a folder named src/scripts and it can be invoked from there with the

following syntax:

~/scripts> ./pycompare.py --ffile=PATH_TO_FORTRAN_RESULT \

--cfile=PATH_TO_C++_RESULT

where the files to be passed as input are those named OSPH and OCLU by

the FORTRAN code and c OSPH and c OCLU by the C++ code. The script

checks in the result files and it returns a result flag of 0 (OS definition of

success), in case of consistent results, or some non-zero integer number (OS

indication of failure) otherwise. The script also writes a summary of its diag-

nostics to the standard output, including the number of inconsistencies that

were considered noisy values, warning values (i.e. values with a substantial

difference but within a given tolerance threshold) and error values (i.e. val-

ues disagreeing by an above-threshold significant difference). If needed, the

user may produce a detailed html log of the comparison by invoking:

~/scripts> ./pycompare.py --ffile=PATH_TO_FORTRAN_RESULT \

--cfile=PATH_TO_C++_RESULT \

--html[=HTML_LOG_NAME]

where the part in square brackets is an optional name of the log file (which,

if not specified, defaults to pycompare.html). Invoking the script without

arguments or with the --help option will result in the script printing a

detailed help screen on terminal and then exit with success code.
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