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Abstract

The OmpSs@FPGA programming model allows offloading application functionality to Xilinx Field Programmable Gate

Arrays (FPGAs). The OmpSs compiler splits the code (written in C/C++ high level language) in two parts, targeting

the host and the fpga. The first is usually compiled by the GNU Compiler Collection (GCC), while the latter is given

to the Xilinx Vivado HLS tool (hereafter HLS) for high level synthesis to VHDL and bitstream used to program the

FPGA. OmpSs@FPGA is based on compiler directives, which allow the programmer to annotate the part of the code

to automatically exploit all Symmetric MultiProcessor system (SMP) and FPGA resource available in the execution

platform.

This technical report provides both descriptive and hands-on introductions to build application-specific FPGA

systems using the high-level OmpSs@FPGA tool. The goal is to give the reader a baseline view of the process of

creating an optimized hardware design annotating C-based code with HLS directives. We assume the reader has a

working knowledge of C/C++, and familiarity with basic computer architecture concepts (e.g. speedup, parallelism,

pipelining).
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Acronyms

The following abbreviations are used in this manuscript:
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AIT Accelerator Integration Tool5
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FF Flip-Flop

FIFO First In First Out20

FLOPs FLoating point Operations Per Second

FMA Fused Multiply–Add

FPGA Field Programmable Gate Array

GCC Gnu Compiler Collection

GPU Graphic Processing Unit25

HDL Hardware Description Language
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HPC High Performance Computing

IOBs Input/Output Blocks

LUT Look-up table30

MMU Memory Management Unit

MPI Message Passing Interface

MPSoC Multi Processing System-on-Chip

OCM On Chip Memory

OpenCL Open Computing Language35

OpenMP Open Multi-Processing
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RISC Reduced Instruction Set Computer40
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RTL Register Transfer Language

SCU Snoop Controller Unit

SIMD Single Instruction Multiple Data

SMP Symmetric MultiProcessor System45

SoC System On Chip

UART Universal Asynchronous Receiver Transmitter
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1. Introduction and motivation50

FPGAs were already used in the past as accelerators in the context of physics simulations and scientific computing

in general. The relevant programming effort to program FPGAs using Hardware Description Languages (HDLs) and

the weak code portability had been the main stoppers towards a wide adoption of FPGAs in the High Performance

Computing (HPC) context.

Nowadays, thanks to the High Level Synthesis HLS approach, FPGAs can be programmed using high level lan-55

guages such as C/C++ and OpenCL, highly reducing the programming effort required, allowing a faster design space

exploration in terms of FPGA resource-usage and performance, and a much higher software portability.

The enhanced compute capability of FPGAs, in conjunction with high energy-efficient hardware – thanks to their

low clock frequency and intrinsic parallelism – are increasing the interest towards their usage as accelerator in HPC

platforms [1].60

The technical report has been done in the context of the EuroEXA project1, aiming at developing a prototype

of an exascale level computing architecture, delivering world-leading energy-efficiency. The compute units are based

on multi-cores ARM processors combined with Xilinx FPGAs. OmpSs@FPGA is one of the high-level programming

framework available on the EuroEXA platform that enables FPGA-accelerated computing.

The technical report is organized as follows. In Section 2 we describe the FPGA architecture and in Section 365

the HLS tool to create the detailed RTL micro-architecture on such a device. The Section 4 is devoted to present

the directive based language OmpSs, developed by the Barcelona Supercomputing Center. We describe the ZedBoard

development kit used in this Technical Report in Section 5. The Section 6 focuses on the Zynq SoC architecture hosted

by the ZedBoard. Algorithm case studies are presented in Sections 7 and 8. In Section 9 we describe the Roofline

model used to measure the computing performance and the energy-efficiency to be expected of an FPGA device. The70

Section 10 is devoted to the conclusions.

1https://euroexa.eu/
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2. FPGA architecture explained to software developer

The aim of this section is to provide to the reader enough information about the FPGA architecture to understand

the HLS compiler reports and effectively use the HLS directives, many of which are meant for target modern FPGA

architecture features.75

2.1. FPGA architecture

An FPGA is a type of integrated circuit made of logic blocks and memory elements that can be connected together

using programmable interconnect. The FPGA architecture is based on the following elements:

• Look-up table (LUT): it performs logic operations. An n-bit LUT can compute any n-input Boolean function.

Larger FPGAs can have million of these elements;80

• Flip-Flop (FF): it acts as a register element storing the result of the LUT. LUTs can be replicated and combined

with FFs to create more complex logic elements called a configurable logic block (Xilinx Vivado HLS tool uses

the term slice);

• Programmable interconnects (wires): they allow the connection between elements (or slices);

• Input/Output (I/O) ports: they get data in and out of the FPGA. The external device can be a micro-85

processor (e.g., an on-chip ARM processor using an AXI interface), or memory (e.g., off-chip DRAM memory

controller).

Current FPGAs incorporate custom resources designed to perform specific task that increase the compute capability

of the device.

An example of this is the DSP48 block available in Xilinx FPGAs. The DSP efficiently implements a series of

arithmetic operations including addition, multiplication, and multiply-accumulate (MAC). So, the DSP is able to

implement functions of the form:

p = a× (b+ c) + d (1)

or

p += a× (b+ c) (2)

Modern FPGAs have hundreds to thousands of these DSP48 distributed through their logic fabric.90

Another example of additional resources are the embedded block RAMs (BRAMs). They are configurable random

access memory banks, which typically are used to transfer data between the FPGA fabric and the microprocessor.

Different locations of BRAMs can be accessed in parallel in the same clock-cycle due to the dual-port nature of these

memories. A typical BRAM holds either 18k or 36k bits and can be cascaded with others to create larger memories.

The BRAMs are co-located next to the DSP482. Compared to the FFs, the BRAMs provide more storage capacity at95

the cost of limited total bandwidth, because only one of the two entries of the BRAMs can be accessed during every

2The UltraRAM blocks are BRAMs with a fixed configuration of 4,096 bits deep and 72 bits wide, available on Xilinx UltraScale+

device.
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External memory BRAMs FFs

count 1-4 thousands millions

size GBytes KBytes Bits

total size GBytes MBytes 100s of KBytes

total bandwidth GBytes/sec TBytes/sec 100s of TBytes/sec

Table 1: A comparison of the different off- and on-chip memories storage. Moving from left to right the storage capability decreases while

the total bandwidth is increased.

clock-cycle. On the contrary, FFs on-chip can be read to and written to on every clock-cycle and thus providing a

huge amount of total bandwidth. The decision about where to place the application’s data is fundamental in terms

of achievable performance and is one of the content covered by this technical report. The HLS tool provides many

options that allows the programmer to specify exactly where and how to store data on the FPGA. Table 1 provides a100

comparison between different type of memories resources.

2.2. Computation on an FPGA

The FPGA device is able to implement any arithmetic and logical function that can run on a x86 processor. The

main difference is that, for the processor, the source code is compiled to a sequence of instructions that execute on a

fixed architecture, while for the FPGA, it is compiled to custom processing pipelines built up from the programmable105

resources. Usually, software developers put a lot of effort restructuring the algorithms in order to increase the temporal

and spatial locality of data in memory to decrease the processor time spent per instruction and to increase the cache

hit rate. This level of effort is not required when the same operation is implemented in an FPGA. Unlike a processor,

where the same ALU performs different computations, in an FPGA independent sets of LUTs are instantiated for

each operation in the software algorithm. For example, the addition of two 32-bit integers gets implemented by Xilinx110

Vivado HLS as 32 LUTs3. Moreover, the compiler arranges memories into multiple storage banks as close as possible

to the point where the operation is performed (this is the reason for the high memory bandwidth shown in Table 1).

3As a rule of thumb, 1 LUT is equivalent to 1 bit of computation
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3. FPGA design with Xilinx Vivado High-Level Synthesis

The job of the Vivado HLS compiler is to create an architecture from the resources available on the FPGA that

best fits the software. In contrast, with a processor, the job of the compiler is to best fit the software in the available115

processor architecture.

The software developer, knowing the FPGA architecture (Section 2), should guide the Vivado HLS compiler to

create the best processing architecture.

Historically, the programming of an FPGA was based on Register-Transfer Level (RTL). It is analogous to Assembly

language, a low-level programming language designed for processors. Nowadays, the HLS approach enables the software120

developer to focus on algorithms rather than individual registers and cycle-to-cycle operations. Many commercial HLS

tools now use C/C++, OpenCL, or SystemC as the input language.

Basically, HLS performs several steps automatically that RTL does manually, e.g., it analyzes and exploits the

concurrency in an algorithm, implements interfaces to connect the rest of the system, and maps data onto storage

elements. The programmer should provide hints to the HLS tool in order to create the most efficient design (using125

#pragma directives).

3.1. Vivado HLS design flow

The full design HLS flow comprises many stages, that are summarized in the following subsections, and shown in

Figure 1.

3.1.1. Input to the HLS stage130

The input to the HLS process is a C/C++, OpenCL, or SystemC function.

3.1.2. Functional verification

First of all, it is necessary to verify the functionality of the target function, before beginning the process of

synthesizing it into RTL code. The outputs of such a function can be checked using a testbench written in the same

high-level language.135

3.1.3. HLS

The next step is performed by the Vivado HLS tool. It analysis and processes the target function, together with

the directives supplied by the programmer, to create an RTL description of the circuit.

The first stage for HLS is to extract the datapath and the control from the nature of the algorithm. The first

refers to operations performed on the data samples, whereas the second to the circuity requested to coordinate the140

dataflow.

Then, the processes of scheduling and binding are undertaken iteratively:

• Scheduling: it is the conversion of RTL statements into a set of operations. Basically, it determines which

operations occur during each clock cycle based on:

– length of the clock cycle (or clock frequency);145

10



Figure 1: Sketch of the Vivado HLS design flow.

– time it takes the operation to be performed (function of the target device);

– user-specified optimizations directives (#pragma HLS).

In general, the number of operations performed per clock cycle depends on the clock frequency and the target

FPGA.

• Binding: it is the process of associating the scheduled operations with the resources of the target device. Hence,150

the resulting implementation has a set of characteristics, namely (i) latency, (ii) throughput, and (iii) physical

resources utilized4.

By default, the Vivado HLS will optimise area, i.e. it will adopt the strategy that consumes the fewest resources. The

4These concepts are explained later.
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disadvantages of this method are its long latency and low throughput, which may not meet the requirements/constraints

of the application. However, the software developer can drive the HLS processes of scheduling and binding using155

directives in the source code.

3.1.4. C/RTL cosimulation (optional)

The equivalent RTL design of the target function can be checked against the original code through the C/RTL

cosimulation embedded in Vivado HLS. This stage re-uses the testbench in order to supply input to the RTL version

generated by HLS.160

3.1.5. Evaluation of the implementation and design iterations

After the (optional) check of the integrity of the design has been performed, it is also necessary to evaluate the

performance of the implementation. For example, the amount of the resources it requires in the FPGA, the latency,

and the maximum supported clock frequency.

If some of those (or all) do not accomplish the goals of the designer, multiple HLS iterations could be necessary,165

either re-engineering or tuning (e.g. using different HLS directives) the target function in order to find the ”best”

solution. Any changes to the code require functional re-verification, before the subsequent HLS, C/RTL verification,

and implementation evaluation processes are again performed and iterated as needed.

3.1.6. RTL export

Once the desired design has been achieved, the RTL files are ”packed” to create the so called Intellectual Property170

(IP) block, which can be integrated in other Vivado tools for inclusion in a FPGA-based system.

3.2. Coding style

HLS tools cannot handle any arbitrary software code. For example, in general they are not able to handle dynamic

memory allocation, system calls, and there is often a limited support for standard libraries.

Following the guidelines of the Vivado HLS tool, we make the following assumption about functions on the source175

code:

• no dynamic allocation (no C/C++ function like malloc(), calloc(), free(), new, and delete()). The

source code provided to the HLS tool must use compile time analyzable memory allocation;

• HLS compiler supports pointers that can be completely analyzed at compile time. Pointers-to-pointers cannot

appear at the interface (pointers to external memory as any memory outside the scope of the function synthesized180

in hardware);

• system calls are not supported (e.g., printf(), exit()). They can only be used outside the scope of the

synthesized code;

• limited support of standard libraries. Common functions declared in math.h are supported;

• recursive function calls are not supported.185

The rest of the Section covers fundamental concepts that apply to FPGA-design.
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3.3. Latency and pipelining

Latency is the number of clock cycles to complete an instruction or, in case of a function invocation, the time

between when the function call is issued and the generation of its result value. In the technical report we use the

term task latency meaning the number of clock cycles required to perform a given operation, and task interval190

meaning the time between when one task starts and the next starts. As a consequence, the computation is bounded

by the task latency, but the start of a new task may not coincide with the writing of output by the old task. The task

interval is related to the instruction pipelining technique. Pipelining means that the next instruction can be lunched

in the execution queue before the current instruction is complete. In an FPGA, the overhead cycles associated with

instruction fetch and instruction decoding are not present. Indeed, one of the key difference between a processor and195

an FPGA is the execution model. Regardless of the type of processor, the instruction stages are always the same,

namely:

• IF: fetch the instruction from program memory;

• ID: instruction decoding;

• EXE: execute the instruction on hardware;200

• MEM: memory operations for the next instruction;

• WB: write back the result of the instruction either to global/external memory (e.g. DRAM) or local registers.

The majority of modern processors are capable of running instructions with some degree of overlap, but the EXE

stage, where resides the real application computation, executes sequentially. On the contrary, an FPGA executes the

program on custom circuit for that program, therefore the IF, ID, and MEM stages are not present. The conclusion205

is that in an FPGA the task latency is measured by how many clock cycles it takes to run the EXE stage.

Figure 2: FPGA implementation without pipelining.

Figure 3: FPGA implementation with pipelining.

Figure 2 shows an hypothetical implementation of the EXE stage using three building blocks, namely A, B, and

C. The task latency is the number of clock cycles it takes a signal to travel from the source to the sink register. In

13



this case, the HLS tool connects the functional blocks, so a second signal cannot start before the first has reached the

sink, resulting in a task interval equal to the task latency.210

Pipelining in an FPGA is the process of inserting more registers among building blocks. This partitioning could

increase the number of the total clock cycle (i.e. increase the task latency), but allows to significantly reduce the

task interval. Figure 3 shows a complete pipelining, meaning that a register is inserted between each functional block.

Using this approach, each building block is allowed to always be busy, which enhances the application throughput at

the cost of more FPGA resource usage.215

Pipelining is a common technique to reduce the total latency of loops. For example, we assume that in our source

code there is the following loop:

Listing 1: Example of loop C code

for (int i=0 ; i<N ; i++)

{

A[i] += (B[i] * C[i]);220

}

Without pipelining the task latency, TL,no pip, (the number of clock cycles to perform the entire loop) is:

TL,no pip = IL ×N (3)

where IL is the iteration latency (the number of clock cycles to perform one iteration of the loop) and N is the loop

count (”trip count”). The effect of pipelining is to reduce the task latency:

TL,pip = IL + (II × (N − 1)) (4)

where II is the loop initialization interval that specifies the number of clock cycles between the start times of consecutive

loop iterations. The minimum value for II is 1. As stated above, the IL in the two cases could be different, because

the insertion of registers can increase the iteration latency of the pipelining design. In the loop code 1, to achieve the

desired II, the HLS tool analyzes the data dependencies and resource contention between consecutive loop iterations225

and acts as follows:

• to address data dependencies, HLS re-arranges the operations or queries the software developer for algorithm

changes;

• to address resource contentions, HLS instantiates more copies of the resources (if available on the target FPGA)

or queries the software developer for algorithm changes.230

3.3.1. Unrolling

Another technique to decrease the loop latency is the loop unrolling. The purpose is to reduce the number of loop

count and to execute different loop iterations at the same time. In this case FPGA resources cannot be shared among

concurrent loop iterations and must be replicated.

Regarding Vivado HLS, it is worth to be noticed it is not possible to have nested pipelines and loops inside a235

pipeline. In the case there is a loop inside a pipeline it needs to be completely unrolled otherwise the pipeline cannot
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be created. The complete unroll is done in automatic by Vivado HLS, but this implies that the inner loops need to

have a loop count known at compile time, and that there are enough resources in the FPGA.

3.3.2. Dataflow

HLS is able to exploit parallelism of both loops and functions. With loops, task latency is typically reduced using240

pipelining and unrolling. With functions, all the stated operations are in the same hierarchical context, which might be

confusing in terms of pipelining or unrolling. Dataflow optimization enables task-level pipelining allowing instructions

in a block of code to overlap in their operations, increasing the overall throughput of the design. The purpose of

the dataflow is to express parallelism at a coarse-grain level. The simplest case of parallelism is when functions of

a program work on a different data sets and do not communicate with each other, meaning that each function can245

be run independently. Vivado HLS analyzes the dataflow between sequential instructions and creates channels that

allow consumer block of instructions to start operations before the producer block of instructions has completed. The

parallelism is achieved by instantiating memory banks (BRAM memory) arranged in a ping and pong manner.

3.4. Throughput/Area tradeoff

The throughput is the rate at which the FPGA can process data. It is just a measurement of the processed volume250

of data per unit of time. In the example described in Figure 2 and 3, the task interval plays a key role in the obtained

throughput. It is clear that the second implementation has higher performance, because it can accept a higher input

data rate.

By default, Vivado HLS tool generates a largely sequential architecture, which tends to limit the number of func-

tional units used in the design (minimizing the area used in the FPGA). HLS can be directed to generate parallel255

architecture using techniques stated above (i.e. pipelining, unrolling, dataflow), increasing the resource usage (FPGA

area) but also the overall performances. Writing highly optimized synthesizable HLS code could not be a straightfor-

ward process. First of all it requires a deep understanding of the algorithm of the application, and second the ability

of change the code such that the HLS tool utilizes the re-engineered code in an effective way creating an optimized

hardware. Experience reveals that code designed for x86 processor yields very poor quality of results when converted260

into FPGA design, and restructured code typically differs substantially from the software implementation. However,

restructuring the code using most of FPGA resources might cause issues during the stages of place and route, resulting

in bitstream generation failure.
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4. OmpSs@FPGA ecosystem

In this technical report we show how to use the directive based language, named OmpSs [2], developed by the265

Barcelona Supercomputing Center (BSC). OmpSs is based on task parallelism, a forerunner of OpenMP, with new

directives extending other accelerator-based APIs like CUDA or OpenCL.

The application programming interface OpenMP5 (Open Multi-Processing) supports multi-platform shared-memory

multiprocessing programming in C/C++, and Fortran. It consists of a set of compiler directives, library routines,

and environment variables that influence run-time behavior, and it is designed to target multi-CPUs (OpenMP >= 5.0270

supports CPUs/GPUs). CUDA6 (Compute Unified Device Architecture) and OpenCL7 (Open Computing Language)

are the main tools used to program the General-Purpose Graphics Processing Units (GPGPUs). While the OpenCL

framework allows running the same code on all GPU manifacturers (e.g. Nvidia, ADM, Intel) and multi-core CPUs

too, the CUDA tool targets specifically Nvidia-GPUs.

With OmpSs it is possible to offload tasks among the host SMP cores, or integrated/discrete GPUs and/or FPGAs.275

OmpSs@FPGA8 uses the vendor Xilinx Vivado and Vivado HLS tools9, to generate the hardware configuration from

high-level source code. OmpSs environment is built on top of Mercurium compiler10 and Nanos++ runtime system11.

The first is a source-to-source compilation infrastructure aimed at fast prototyping, supporting C/C++ and Fortran

languages. The latest is a scheduler designed to serve as runtime support in parallel environments.

4.1. OmpSs@FPGA source code example280

The following code, customized from the OmpSs@FPGA user guide12, shows an implementation of the dot product

using an FPGA task.

Listing 2: OmpSs@FPGA source code example of the implementation of the dot product using an FPGA task.

typedef float MyData;

const int BSIZE = 64;

#pragma omp target device(fpga) num_instances (2)285

#pragma omp task in([BSIZE]v1, [BSIZE]v2) inout ([1] result)

void dotProduct(const MyData *const restrict v1 ,

const MyData *const restrict v2,

MyData *const restrict result)

{290

MyData resultLocal = *result;

for (unsigned short int i=0 ; i<BSIZE ; i++)

5https://www.openmp.org/
6https://developer.nvidia.com/cuda-zone
7https://www.khronos.org/opencl/
8Online documentation at: https://pm.bsc.es/ompss-at-fpga.
9Online documentation available at: https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html.

10Online documentation available at: https://pm.bsc.es/mcxx.
11Online documentation available at: https://pm.bsc.es/nanox.
12Online documentation available at: https://pm.bsc.es/ftp/ompss-at-fpga/doc/user-guide/
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{

resultLocal += (v1[i] * v2[i]);295

}

*result = resultLocal;

}

300

int main()

{

const int vecSize = 256;

MyData v1[vecSize ];

MyData v2[vecSize ];305

/* Initialize the vectors */

/* ... */

MyData result = 0;310

for (int i=0 ; i<vecSize ; i+=BSIZE)

{

dotProduct(v1+i, v2+i, &result);

}

#pragma omp taskwait315

/* Somehow use the result value */

/* ... */

return 0;320

}

In the source code 2, the function dotProduct is defined as a OmpSs@FPGA task (also called FPGA kernel) with

input dependencies v1 and v2 and input/output dependency result. Each call to this function in the main function

will generate a task that will be run as soon as its dependencies are ready. The task can be executed concurrently by

two instances in the FPGA (if there are enough resources available). The programmer can also annotate the source325

code by using some additional directives (#pragma HLS not related to OmpSs programming model, but understandable

by the Vivado HLS tool during the creation of the bitstream for the FPGA.

Through the technical report, we will show the most widely applied #pragma HLS directives, discussing in details

how they can be used to optimized the accelerated kernels.

4.2. OmpSs@FPGA toolchain flow330

The source-to-source OmpSs compiler (Mercurium) splits the host code and the fpga kernels into separate files. The

part to be run in the host SMP is annotated with all the runtime calls and then compiled with GCC. The Accelerator

Integration Tool (AIT) takes care of the part related to FPGA. AIT interfaces with Vivado tools (Xilinx Vivado

Design Suite) to generate the FPGA bitstream. Moreover, the Mercurium compiler produces the wrapper function

for each accelerated task, used to invoke the FPGA from Nanos++ runtime system. More in detail, AIT first invokes335
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Figure 4: OmpSs@FPGA toolchain flow. Credit https://pm.bsc.es/ompss-at-fpga.

Vivado HLS to synthesize the kernel creating the Intellectual Property (IP) core, and then Vivado Design to connect

the IP core with local memory (BRAM) and AXI ports (they allow the communications between the host and the

accelerator), generating the FPGA bitstream. All the compilation process is done automatically by AIT following the

directives added by the programmer. Figure 4 shows the toolchain flow.

4.3. Execution model340

Nanos++ runtime system takes care of executing tasks as annotated by the programmer in the source code mapping

them to the available resources in the compute platform. Nanos++ and OpenMP environment differ in the execution

model. The former employs the thread-pool execution model, while the latter implements the fork-join parallelism.

When programming using OpenMP, the software developer has to define which section of the code will be executed in

parallel, then explicitly express how the inner code has to be executed by threads in the parallel region (adding specific345

directives if necessary). OmpSs simplifies part of this job by providing an environment where parallelism is implicitly

assumed and created from the beginning of the execution of the program, thus the programmer is allowed to omit the

declaration of parallel regions. The definition of a parallel region is performed using the concept of task, which is a

block of code that can be executed asynchronously in parallel, following an explicit dependency mechanism added by

the programmer to guarantee a correct execution.350

This means that, the Nanos++ environment has:

• the thread-team created by default when the program execution starts;

• the dependence graph used to organize tasks and resolve data dependencies among them;

• the task-pool that will be executed by threads.
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The duty of Nanos++ is also to take care of the possible heterogeneity expressed by the programmer, that could355

target GPUs/FPGAs accelerators, managing the necessary memory transfers.

4.4. Support for heterogeneous platform

Listing 3: OmpSs@FPGA source code example of heterogeneous execution.

#define N 128

const unsigned int SIZE = N;

360

float x[N];

float y[N];

float z[N];

int main()365

{

#pragma omp target device(smp)

#pragma omp task inout ([SIZE]x)

do_computation_CPU(x);

370

#pragma omp target device(fpga)

#pragma omp task inout ([SIZE]y)

do_computation_fpga(y);

#pragma omp target device(smp ,fpga)375

#pragma omp task inout ([SIZE]z)

do_computation_CPU_fpga(z);

#pragma omp taskwait

380

/* Somehow use the results */

/* ... */

return 0;

}385

Figure 3 shows an example code includes target device directives that indicate two target devices for the defined

tasks. One that must be run on CPU, which is marked as target device(smp), a second that must be run on a

FPGA, marked with target device(fpga), and a third that can be run either in the CPU or the FPGA. The latest

task creates instances of the same type, which can potentially run in parallel at runtime in both devices. In general

the clause device(target-device) allows to specify on which device should be targeted the construct. If no device390

is specified then the SMP device is assumed.

4.5. Memory management

OmpSs is able to handle architectures with disjoint memory address spaces like heterogeneous systems built around

accelerators with private memory, freeing the programmer to explicitly expose the underlying memory hierarchy.
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OmpSs hides the existence of other memory spaces present on the system, but, the programmer has to specify the data395

each task is accessing in order to correctly support the platform.

There is a set of directives aimed at specifying data task dependencies. The clauses are the following:

• copy in(list-of-variables): data should be copied to the device before the associated kernel is executed;

• copy out(list-of-variables): data should be copied from the device to the host after the kernel execution;

• copy inout(list-of-variables): this clause is the combination of the previous ones;400

• copy deps: if the attached construct has any dependence clauses then they require, at runtime, device space

memory for copies between host memory and device local memory (i.e. in will also be considered copy in, output

will also be considered copy out). copy deps is automatically deactivate if copy in/out/inout are specified.

In all cases the runtime, managed by Nanos++, takes care of allocating device memory and perform data movements

between host and device memories for the list of variables labeled as copies. It is also possible to explicitly allocate405

device memory using Nanos++ runtime APIs so that the device can access them. In any of the task variables is a

scalar, then it is directly passed to the accelerator without the need of being listed.

4.6. Tracing the program execution

OmpSs@FPGA ecosystem allows to trace Nanos++ threads running in cores and/or FPGA. The programmer can

analyze both the application and runtime internals such as the creation of tasks, task executions, synchronizations, etc.410

Regarding FPGA, the current support provides the user with the information of execution time and data movements.

The FPGA execution trace is generated using an internal tracing library (the programmer has only to activate the

corresponding compilation flag), the information is merged with the host information using the Extrae tool13 and can

be visualized with the Paraver tool14.

4.7. Supported board415

At the time of writing, OmpSs@FPGA has been successfully tested in the following boards:

• Zynq-7000 Family

– ZedBoard

– Zynq 702

– Zynq 706420

– Diligent Zybo Zynq 7000

• Virtex-7 Family

– Alpha Data ADM-PCIE-7V3

13Extrae is available at: https://tools.bsc.es/extrae.
14Paraver is available at: https://tools.bsc.es/paraver.
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• Zynq-Ultrascale+ Family

– SECO Axiom Board425

– Trenz Electronics Zynq U+

– Zynq U+ ZCU102

Programmers interested in OmpSs@FPGA and want more information, have to mail to the OmpSs support team:

ompss-fpga-support@bsc.es. They provide:

• Docker image: it contains a pre-configured environment to build OmpSs@FPGA applications targeting the chosen430

board. The prerequisites required are the following:

– Docker;

– Xilinx Vivado Design Suite (recommended 2017.X or higher)15;

– Vivado licence for the target device. Academic licenses for Xilinx software and IP and low cost Xilinx

FPGA and Zynq SoC development kits can be obtained through the Xilinx University Program16;435

– [Optional for BOOT.bin generation] Xilinx Petalinux.

The image contains different Mercurium installations to cross-compile applications for each architecture. In

addition, it contains the required libraries in the /opt/install-XXX folder. The image does not contain an

installation of Xilinx tools (see above);

• SD image: it contains the OS of the target board (usually Ubuntu 16.04 LTS). The user should use both Docker440

and SD image from the same release.

15Xilinx tool can be downloaded from https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/

vivado-design-tools/archive.html
16Xilinx University Program: https://www.xilinx.com/support/university.html.
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5. Experimental setup

Figure 5: ZedBoard development kit. It includes the Avnet ZedBoard 7020 baseboard, 12 V power supply, 4 GB SD Card, a micro-usb

cable, USB adapter (male micro-B to female standard-A).

In this Section we detail the software and hardware setup that we used to exploit the Xilinx FPGA using

OmpSs@FPGA:

• Software stack on the development x86 computer :445
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Figure 6: Functional overlay of the ZedBoard.

– Ubuntu 18.04 LTS (64 bit). Xilinx tools support also Linux CentOS 6.x/7.x, SUSE Linux Enterprise 11.4

and 12.3, Red Hat Enterprise Workstation 6.x/7.x;

– Vivado Design Suite 2017.3 (Linux version), downloadable from the software webpage https://www.

xilinx.com/products/design-tools/vivado.html. From the webpage download the Linux Self Extract-

ing Web Installer. Release notes, installation and licensing can be found in the Vivado Design Suite User450

Guide (https://www.xilinx.com/support.html#documentation). It is possible to get an evaluation li-

cence with 30 days expiration, or an academic license through the Xilinx University Program.

– Docker version 19.03.6;

– OmpSs@FPGA version 2.1.0. The OmpSs support team provides the docker image;

– Minicom tool, a text-based serial port communications program. It is used to talk to external devices and455

serial console ports. We use it to communicate with the board hosting the FPGA.

• ZedBoard FPGA board :
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for testing OmpSs@FPGA we use the ZedBoard17, a complete development kit for designers interested in exploring

designs using the Xilinx Zynq-7000 All Programmable System on Chip (SoC). The board contains all the nec-

essary interfaces and supporting functions to enable a wide range of applications. The expandability features of460

the board make it ideal for rapid prototyping and proof-of-concept development The kit is shown in Figure 5.

– Features (functional overlay of the board is shown in Figure 6):

∗ Zynq-7000 SoC family, which integrates the software programmability of an ARM-based dual core

processor with the hardware programmability of an FPGA;

∗ memory:465

· 512 MB DDR3;

· 256 Mb Quad-SPI Flash;

· 4 GB SD card.

∗ onboard USB-JTAG programming;

∗ 10/100/1000 Ethernet;470

∗ USB OTG 2.0 and USB-UART;

∗ PS & PL I/O expansion;

∗ multiple displays (1080p HDMI, 8-bit VGA, 128 x 32 OLED);

∗ I2S Audio CODEC.

– Target applications:475

∗ software accelerations (the content of the technical report);

∗ video processing;

∗ embedded ARM processing;

∗ motor control;

∗ general Zynq-7000 All Programmable SoC prototyping.480

The board runs an Ubuntu Linux 16.04 LTS, provided by the OmpSs support (SD image version 2.1.0.), where we

perform the test of our software. We also use performance tools Extrae and Paraver to analyze the application

behaviour.

5.1. System setup and requirements

The hardware specification of the development x86 computer is significant, as this influences execution times when485

running the Xilinx design tools.

Even if Xilinx allows to run its software in any x86 computer, our experience suggests that at least 16 GB of

RAM in the development x86 computer is recommended for the (small) ZedBoard device. Generally speaking, at least

quad-core processor is recommended, since some of the design tools have multi-core processing support.

To effectively exploit the ZedBoard the following steps are required:490

17ZedBoard webpage: http://zedboard.org/product/zedboard.
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Figure 7: Hardware development setup.

• be sure that the board is turned off;

• insert the SD card in the board (it contains the OS provided by the OmpSs@FPGA support team). Set jumpers

for boot from SD card as in Figure 8;

• connect the board to the power supply;

• connect the microUSB side of the microUSB–USB cable to UART connection (see Figure 7);495

• connect the USB side of the microUSB-USB cable to the development x86 computer;

• turn on the board;

• run on the development x86 computer the " dmesg " command and look for something like: ... ttyACM0: USB

ACM device ... (See Figure 9 for an example). This is required to setup the minicom port;
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• assuming that the dmesg log reports ttyACM0, run the command " sudo minicom -D /dev/ttyACM0 -b 115200500

". The ZedBoard boots up the OS (see Figure 10);

• ssh and scp are available through the ethernet connection. This will be useful to transfer files (in particular the

bitstream for the FPGA) between the development x86 computer and the ZedBoard.

• when the ZedBoard is no longer needed, shut down the board with either the command " sudo halt ", or "

sudo shutdown now ".505

Figure 8: Jumper setting for boot from SD card.
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Figure 9: Example for output of the dmesg command issued on the development x86 computer connect via the UART port to the ZedBoard.

Figure 10: ZedBoard connected through minicom connection to the development x86 computer.
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6. The Zynq device

The Zynq combines a dual-core ARM Cortex-A9 (32 bit) processor with an FPGA logic fabric. The ARM Cortex-

A9 is an application grade processor, capable to run a full OS such as Linux, while the programmable logic is based on

Xilinx 7-series FPGA architecture. The two part of the device are connected through Advanced Extensible Interface

(AXI) interfaces, which provide high bandwidth and low latency connections.510

6.1. SoC with Zynq

Figure 11: Sketch of the Zynq SoC architecture.

The idea behind SoC is that single silicon chip can be used to implement the functionality of an entire system, rather

than several different physical chips being required. A SoC can combine physically separated devices together into a

system. The SoC solution is a low-cost, it enables faster data transfers between the various system elements, it has

lower power consumption, smaller physical size, and better reliability. The high level model of the Zynq architecture is515

sketched in Figure 11 and comprises two parts: a Processing System (PS) formed around a dual-core ARM Cortex-A9

(32 bit) processor, and a Programmable Logic (PL), which is the FPGA. It also features integrated memory and

high-speed communication interfaces, called Advances eXtensible Interface (AXI) connections. OS, applications are

hosted on the PS, whereas the PL gives to the designer a ”black canvas” where to create custom peripherals (also
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called IP functional blocks), or to reuse standard ones. The power circuitry is configured with separate domains for520

each, enabling either the PS or PL to be powered down if not in use.

In the next subsections we give an in-depth description of the Zynq. Extended information can be found in the

Zynq-7000 Technical Reference Manual18.

6.2. Processing System

Figure 12: The Zynq Processing System. Credit Xilinx.

The Zynq PS encompasses not just the ARM processor, but a set of associated processing resources forming an525

Application Processing Unit (APU), and further peripheral interfaces. A block diagram of the PS is shown in Figure 12,

where the APU is highlighted in green.

The APU is composed by two ARM processing cores, each with associated computational units:

18Zynq-7000 Technical Reference Manual: https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf.
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• NEON Media Processing Engine (MPE) and Floating Point Unit (FPU). NEON engine provides Single In-

struction Multiple Data (SIMD) facilities, so it can accept multiple sets of input vectors upon which the same530

operation is performed simultaneously. NEON instructions can be explicitly used, or inferred by the compiler.

NEON supports a variety of data types including integers and single precision point, but not double precision.

The FPU, which does not have SIMD capability, is required if double precision computation is needed. The

FPU unit provides hardware acceleration for floating point IEEE-754 compliant operations in single and double

precision;535

• Memory Management Unit (MMU), which translates between virtual to physical addresses;

• Level 1 cache memory, 32KB for each core, in two sections for data and instructions;

• Level 2 cache memory, 512KB shared between cores;

• On Chip Memory (OCM), 256KB on-chip memory;

• Snoop Controller Unit (SCU), which interfaces the processors with L1 and L2 memories (cache coherency).540

SCU manages transactions that take place between the PS and PL through the Accelerator Coherency Port

(ACP).

6.2.1. Processing System External Interfaces

Communications between the PS and the external interfaces is achieved via the Multiplexed Input/Output (MIO),

or through the Extended MIO (EMIO), both shown at the left hand side of Figure 12.545

The available I/O includes standard communications interfaces. The complete set of I/O peripheral interfaces can

be found in the Zynq-7000 Technical Reference Manual. For our purposes we use:

• Universal Asynchronous Receiver Transmitter (UART): it is a low data rate modem interface for serial

communication, and it is used for terminal connections to a host PC;

• SD: for interfacing with SD card;550

• GigE: Ethernet MAC peripheral, supporting 10Mbps, 100Mbps, and 1Gps modes.

6.3. Programmable Logic

The general FPGA architecture has been already presented in Section 2, thus, in this Section, we focus on the

features of the Zynq PL, using Xilinx-specific terms.

The second part of the Zynq SoC is the PL. This is based on the Artix-7 and Kintex-7 FPGA fabric. Features of555

the PL are the following:

• Configurable Logic Block (CLB): they are small groups of logic elements connecting among them through

programmable interconnects. Each of them contains two logic slices. Figure 13 shows a sketch of a CLB;

• Slice: a sub-unit within the CLB composed by 4 Lookup Tables, 8 Flip-Flops and other logic;

• Lookup Table (LUT): a flexible resource capable of implementing:560
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Figure 13: Sketch of the composition of a Configurable Logic Block (CLB).

i) shift register;

ii) logic function;

iii) small Read Only Memory (ROM);

iv) small Random Access Memory (RAM).

LUTs can be combined together to form a larger unit as required;565

• Flip-Flop (FF): a circuit element implementing a 1-bit register;

• Switch Matrix: it provides a flexible routing connections between elements within a CLB, and from one CBL

to other resources within the PL;
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• Carry Logic: it comprises a chain of routes and multiplexers to link slices in a vertical column;

• Input/Output Blocks (IOBs): they provide interfacing between the PL and the external circuitry.570

From the point of view of the software developer, there is not the need to specifically target these resources, because

the Xilinx tools (called by the OmpSs AIT wrapper) automatically infer the required LUTs, FFs, IOBs, etc. from the

design, and map them accordingly.

6.3.1. Additional resources: Block RAMs and DSP48s

The Zynq PL hosts special resources: Block RAMs (BRAMs) for high-speed memory requirements, and DSP48s slices575

for high-speed arithmetic. The two components are integrated into the PL normally in proximity to each other. BRAMs

can implement Random Access Memory (RAM), Read Only Memory (ROM), and First In First Out (FIFO) buffers,

also supporting Error Correction Coding (ECC). Each BRAM can store up to 36Kb of data, and can be configure either

as two independent 18Kb RAMs, or one 36Kb RAM. Each RAM comprises 2048 memory elements of default size of

18-bits, however can be configured such that it contains smaller (e.g. 4096 elements x 9 bits), or larger elements (e.g.580

1024 elements x 36 bits). It is possible to form larger capacity memories combining more BRAMs together.

Data can also be stored into distributed RAM, which is built up from LUTs. However a large number of LUTs is

required to achieve a memory size comparable to one BRAM, and the resulting implementation suffers from restricted

timing performance due to increased logic and routing complexity. On the other hand, sometimes is necessary to

implement small memories using LUTs due to the limited number of read/write ports of the BRAMs (the techinique is585

often implemented when either pipilining or unrolling is used, and it will be shown in the examples presented in this

technical report).

DSP48s are meant for implementing high-speed arithmetic. They comprise a adder/subtractor, and multiplier. The

unit can compute either functions like:

D = (A+B)× C (5)

or

D
′

= D +A (6)

It is also capable of SIMD operations, and complex floating point arithmetic can be performed combining multiple

DSP48s. An in-depth description of all the functionalities of DSP48 and BRAM can be found in Xilinx 7 Series DSP48E1

Slice19, and Xilinx 7 Series FPGAs Memory Resources20, respectively.590

6.4. PS – PL interfaces

The appeal of Zynq SoC lies on the ability to use PS and PL in tandem to form an integrated system. The bridge

between the two parts are the Advanced eXtensible Interface (AXI) interfaces and connections.

We briefly describe the connections and how they can be used.

19Xilinx 7 Series DSP48E1 Slice: https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf.
20Xilinx 7 Series FPGAs Memory Resources: https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_

Resources.pdf.
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6.4.1. The standard AXI595

The AXI has become de facto a standard for ARM on-chip communication, and Xilinx contributed strongly to the

definition of the current version AXI4.

There are three types of AXI4:

• AXI4: used for memory-mapped links. Burst-data transfer can be enable providing high-performance. Data can

be transfer in burst (up to 256 data words) after an address in supplied;600

• AXI4-Lite: like AXI4 but without the burst mode;

• AXI4-Stream: no-memory mapped, used for high-speed streaming data, supporting bust transfers of unrestricted

size.

If a protocol is memory-mapped, in the case of AXI4 bursts, the address for the first data word (read or write) is

issued by the master (PS), and the slave (PL) must then calculate the addresses for the data words that follow.605

6.4.2. AXI interface and interconnection

First of all it is useful to briefly define the concept of interface and interconnection:

• interface: a point-to-point connection for transfer data between master and slave clients;

• interconnection: a switch that manages data movements between attached AXI interfaces.

Interface Description Master Slave

M AXI GP0
general purpose

PS PL

M AXI GP1 PS PL

S AXI GP0
general purpose

PL PS

S AXI GP1 PL PS

S AXI ACP cache coherent transaction PL PS

S AXI HP0

high performance ports

with read/write FIFOs

PL PS

S AXI HP1 PL PS

S AXI HP2 PL PS

S AXI HP3 PL PS

Table 2: Interfaces between PS and PL.

Table 2 summarizes the available interfaces, in accordance with convention that the master is in control of the bus,610

and initializes the transaction, and the slave responds.

The four S AXI HP[0-3] ports are high performance AXI interfaces that include FIFO buffers to allow burst

read/write transactions, and support high rate communications between the PL and memory (DDR) in the PS. The

data width is either 32 or 64 bits, and the PL acts as the master.
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6.5. The Zynq-7000 series615

The Zynq-7000 product comprises six different devices, with different features. The Table 3 lists the prominent

features of such devices. Basically, the main difference between devices is the density of the resources embedded within

the PL. Smaller devices are based on Xilinx Artix-7 FPGA logic fabric, and the larger ones on Xilinx Kintex-7 logic

fabric. The ZedBoard is equipped with the Z-7020. The PS in standard across devices, the only difference is the

maximum core frequency.620

Z-7010 Z-7015 Z-7020 Z-7030 Z-7045 Z-7100

Processor Dual core ARM Cortex-A9 (32bit) with NEON and FPU

Max CPU

clock frequency
866 MHz 1 GHz

PL Artix-7 Kintex-7

# FFs 35200 96400 106400 157200 437200 554800

# LUTs 17600 46200 53200 78600 218600 277400

# BRAM 18K 120 190 280 530 1090 1510

# DSP48 80 160 220 400 900 2020

Table 3: Zynq-7000 series. Regarding the PL, the table reports the number of FFs, LUTs, BRAM 18K, and DPS48 elements available.
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7. Basic algorithm case studies

This Section contains examples and basic exercises. The main purpose is to provide guidance in learning the

Xilinx HLS tool and the OmpSs@FPGA programming model. The source codes of the examples are available on GitLab

(https://www.ict.inaf.it/gitlab/david.goz/oats-technical-report-ompss_at_fpga.git) under GPL321.

7.1. Loops625

Loops are used extensively in software programming, and constitute a natural method of expressing operations

that are repetitive in some way. Using Vivado HLS directives the software developer can change in a straightforward

way how loops are converted in hardware.

During the reminder of the subsection, the default synthesis loop, and optimizations through the use of directives are

discussed. In this first overview, very simple example codes are shown in order to clearly discuss the HLS-optimizations.630

7.1.1. Default loop synthesis

Figure 14: List of active docker containers.

Figure 15: Docker container start.

Listing 4: Example code of a loop adding the elements of two arrays. No HLS-pragmas are applied. The Vivado HLS synthesis estimate of

resources is shown.

typedef int32_t MyData;

21GNU General Public License 3, https://www.gnu.org/licenses/gpl-3.0.html

35

https://www.ict.inaf.it/gitlab/david.goz/oats-technical-report-ompss_at_fpga.git
https://www.gnu.org/licenses/gpl-3.0.html


#define BLOCK 128

const unsigned int BSIZE = BLOCK;

635

#pragma omp target device(fpga)

#pragma omp task in([BSIZE]in1 , [BSIZE]in2) out([ BSIZE]out)

void acc_vadd(const MyData *const restrict in1 ,

const MyData *const restrict in2 ,

MyData *const restrict out)640

{

loop_vector_add:

for (u_int16_t i=0 ; i<BLOCK ; i++)

{

out[i] = (in1[i] + in2[i]);645

}

return;

}

650

/* ********************* VIVADO HLS REPORT ******************* */

/* Target Board: ZedBoard */

/* *********************************************************** */

/* DSP48E 0 used | 220 available - 0.0% utilization */

/* BRAM_18K 11 used | 280 available - 3.93% utilization */655

/* LUT 8701 used | 53200 available -16.36% utilization */

/* FF 5565 used | 106400 available - 5.23% utilization */

/* *********************************************************** */

We start from a simple code that adds the elements of two arrays. On the repository, the source code is under the

oats-technical-report-ompss at fpga/loop/default folder:660

1. OmpSs@FPGA environment: first of all, we need to start the Docker container:

• run: "docker ps -a". Although it may change the release of the package, the command output should be

the list of active docker containers (the command might require sudo privileges, depending on how docker

has been configured). An example output is shown in Figure 14;

• look for the name of the container (multiple-version of OmpSs@FPGA might be installed). Run: "docker665

start -i -a name container" (the command might require sudo privileges). An example output is shown

in Figure 15;

• to exit from the container it is enough running the command: "exit".

2. Cross-compiling:

• Makefile and example code (vadd.c) are prepared to compile and generate an OmpSs binary and the670

bitstream targeting the ZedBoard. The function to be ported on the FPGA is shown in 4;

• in order to estimate the performance of the accelerator, before starting the time consuming process of

generating the hardware, we will make the compilation stop after the Vivado HLS project is generated. At
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Figure 16: Vivado HLS Analysis Perspective.

Figure 17: Vivado HLS Analysis Perspective with resource profile.

the moment we compile without hardware instrumentation, which will allow us to profile our application

during execution.675
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Run: "make HLS p". The command issues the compilation with the flag --to step=HLS, stopping the com-

pilation after the HLS synthesis. The folder zedboard HLS p/ is created and inside it the file vadd HLS p.resources.txt

reports the resources estimate (DSP48s, BRAMs, LUT, FF are reported in 4). The Vivado HLS resource esti-

mate shows that DSP48s are not utilized, because no floating-point arithmetic is used.

3. Vivado HLS analysis:680

by default, Vivado HLS seeks to optimize area, so minimizing the resource to perform the loop. This means

that the repetitive operations described by the loop (load and adder) are realised by a single piece of hardware

implementing the body of the loop. The loop is designed to add the individual elements of two arrays. From

the hardware point of view, one single adder is instantiated, shared BLOCK times according to the trip count.

The Vivado HLS project can be analyzed using the following command in the working directory:685

"vivado hls -p zedboard HLS p/vadd HLS p ait/xilinx/HLS/acc vadd/"

Once it is open, we can select the Analysis perspective on top-right corner. There, we can look for the accelerated

function, called acc vadd moved by OmpSs@FPGA, to analyse the latency and the resource requirement, as show

in Figure 16. From the Performance Profile (on bottom-left corner), we can see that the latency to perform

the vector addition is 384 clock cycles (task latency): 3 cycles (iteration latency) for 128 iterations (without

including reading the inputs from memory, and writing the output to memory). Hence, the total number of

clock cycles to complete the execution of a loop, Cloop, would be:

Cloop = (N × Cbody) + Coverhead (7)

where N is the number of iterations, Cbody the number of clock cycles to execute all the operations in the loop

body (i.e. iteration latency), and Coverhead represents the overhead of transitions into and out the loop (e.g.

memory transfers). We can see that pipeline is not applied (it must be explicitly define by the appropriate

#pragma HLS), and the initialization interval is not reported because is equal to the task latency.690

Also from the Performance Profile, the label loop vector add of our code is shown, helping the programmer to

analyze the code.

The Performance view (top-right) allows the programmer to interactively analyze the results in detail. The

Performance view shows the following:

• the design starts in the C0 state;695

• it then starts to execute the logic in loop vector add ;

• the loop executes over 3 states: C1, C2, and C3; at C1 the design enters the loop, checks the loop increment

counter and exit condition. The design then reads data into variable in1 load and in2 load, which require

two clock cycles. Two clock cycles are required because the design is accessing a BRAM, requiring an address

in one cycle and a data read in the next. At C2 the design performs the sum and at C3 writes output;700

• the loop return to the start.

In general, in the Performance view, the operations resulting from loops in the source code are colored yellow,

standard operations are purple, and (possible) sub-blocks are green. Programmer can select an operation and

right-click the mouse to open the associated operation in the source code view.
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The Resource Profile pane (top-right) shows the resources used for every clock cycle. In our case (see Figure 17),705

two adders are required, one for the trip count and another for the vector add, so there is no sharing of the

adders. More than one add operation on each horizontal line indicates the same resource is used multiple times

in different states or clock cycles.

4. Application execution on the FPGA: it is necessary to completely compile the application to generate

the bitstream, which is required to program the FPGA. The compilation may take a while, depending on the710

computation capability of the x86 development computer. It could be useful to use the nohup command to run

the compilation so that it is possible to continue working while the application is compiling.

• Run: "nohup make bitstream fpga p >& \

output bitstream fpga p.txt &". The x86 development computer starts the time consuming compilation;

• run: "tail -f output bitstream fpga p.txt" to observe the progress of the compilation;715

• transfer the following files from the x86 development computer to the ZedBoard22. This can be accomplished

using the scp command:

– executable: in our case the vadd fpga p file;

– bitstream (*.bin): this file should be under the folder /zedboard fpga p/vadd fpga p ait. It is the

bitstream used to program the PL;720

– configuration runtime (*.xtasks.config): this file should be under the folder /zedboard fpga p/vadd fpga p ait.

It is the configuration runtime file that is necessary when running the application. It contains the name

of the accelerator, its working frequency, and the number of instances;

• login into the ZedBoard. After that do the following steps:

– run: load bitstream vadd fpga p.bin, as shown in Figure 18. With this command the FPGA is725

programmed;

– run the application through the executable. An example using the size vector of 1024 is shown in

Figure 18. The application performs the calculation of the vector addition first on the CPU, then on

the FPGA, and after that compares the results in order to check the correctness of the calculation on

the FPGA. The application gets also time measurements, as shown in the Figure, so comparing the730

performance on the CPU (software execution time) and the FPGA (hardware execution time);

• Shutdown the ZedBoard: correctly shut down the board with sudo halt of sudo shutdown now.

7.1.2. Pipelining loop

The loop synthesis of the previous code leads to a sequential execution in hardware, i.e. each iteration cannot start

before the previous one has finished.735

Listing 5: Example code of a loop adding the elements of two arrays. HLS-pipeline is applied. The Vivado HLS synthesis estimate of

resources is shown.

22Section 5.1 shows in detail how to connect to the board.
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Figure 18: ZedBoard application run.

typedef int32_t MyData;

#define BLOCK 128

const unsigned int BSIZE = BLOCK;

#pragma omp target device(fpga)740

#pragma omp task in([BSIZE]in1 , [BSIZE]in2) out([ BSIZE]out)

void acc_vadd(const MyData *const restrict in1 ,

const MyData *const restrict in2 ,

MyData *const restrict out)

{745

loop_vector_add_pipeline:

for (u_int16_t i=0 ; i<BLOCK ; i++)

{

# pragma HLS pipeline II=1

750

out[i] = (in1[i] + in2[i]);

}

return;

}755

/* ********************* VIVADO HLS REPORT ******************* */

/* Target Board: ZedBoard */

/* *********************************************************** */

/* DSP48E 0 used | 220 available - 0.0% utilization */760

/* BRAM_18K 11 used | 280 available - 3.93% utilization */

/* LUT 8729 used | 53200 available -16.41% utilization */
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/* FF 5569 used | 106400 available - 5.23% utilization */

/* *********************************************************** */

In order to improve the throughput of the design, a pipeline can be created inserting registers between each765

functional block, as described in Section 3.3 (on the repository the source code is under the oats-technical-report-

ompss at fpga/loop/pipelining folder). The PIPELINE pragma, inserted in the loop body, reduces the initiation interval

by allowing the concurrent execution of operations. The default initiation interval for the PIPELINE pragma is 1, which

processes a new input every clock cycle. The software programmer can also specify the initiation interval through the

use of the II option for the pragma. If Vivado HLS cannot create a design with the specified II, it:770

• issues a warning (the programmer receives a hint to overcome the problem);

• create a design with the lowest possible II.

In general, the total number of clock cycles to complete the execution of the pipelined loop would be:

Cloop = Cbody + [II × (N − 1)] + Coverhead (8)

where II is the initiation interval.

Figure 19: Vivado HLS Analysis Perspective when pipelining in applied.

In our example reported in the source code 5, Vivado HLS is able to create a pipelined loop with II = 1, so that

the iteration latency is still 3 clock cycles, but the total task latency, with a modest increased resource usage of LUTs775

and FFs, is reduced to 130 clock cycles (Cloop − Coverhead), as shown in Figure 19. The effect of adding a pipelining

directive can therefore be considerable, especially where there are multiple operations within the loop body, and many
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iterations of the loop are performed. It is worth to be noticed that, in the case there is a loop inside a pipeline it

needs to be completely unrolled, otherwise the pipeline cannot be created. This leads to an increased FPGA resource

usage, and likely a resource contention.780

7.1.3. Unrolling loop

Loop unrolling is another technique to exploit parallelism between loop iterations, as already discussed in Sec-

tion 3.3.1 (on the repository the source code is in the oats-technical-report-ompss at fpga/loop/unrolling folder). It

creates multiple copies of the loop body and adjust the loop iteration counter accordingly.

Listing 6: Example code of a loop adding the elements of two arrays. HLS-unroll by a factor of 2 is applied. The Vivado HLS synthesis

estimate of resources is shown.

typedef int32_t MyData;785

#define BLOCK 128

const unsigned int BSIZE = BLOCK;

#pragma omp target device(fpga)

#pragma omp task in([BSIZE]in1 , [BSIZE]in2) out([ BSIZE]out)790

void acc_vadd(const MyData *const restrict in1 ,

const MyData *const restrict in2 ,

MyData *const restrict out)

{

loop_vector_add_unroll:795

for (u_int16_t i=0 ; i<BLOCK ; i++)

{

# pragma HLS unroll factor =2

out[i] = (in1[i] + in2[i]);800

}

return;

}

805

/* ********************* VIVADO HLS REPORT ******************* */

/* Target Board: ZedBoard */

/* *********************************************************** */

/* DSP48E 0 used | 220 available - 0.0% utilization */

/* BRAM_18K 14 used | 280 available - 5.0% utilization */810

/* LUT 8790 used | 53200 available -16.52% utilization */

/* FF 5603 used | 106400 available - 5.27% utilization */

/* *********************************************************** */

So, in theory, unrolling a loop by a factor of F basically creates F copies of the loop body, and the task latency is

expected to be reduced by a factor of F , i.e.:

Cloop =

(
Cbody ×

N

F

)
+ Coverhead (9)
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In our example reported in the source code 3.3.1, we create a partial unroll by a factor of two. As expected the

task latency is reduced to 192 clock cycles (Cloop − Coverhead).815

The unrolling technique could lead one to believe that, if there are enough FPGA resources available, simply by

putting ”#pragma HLS unroll factor=N” it is possible to achieve a speedup by a factor of N .

TIMING (clock cycles) PL RESOURCES

Task

latency

Iteration

latency

Trip

count

Unroll

factor
DSP48E BRAM 18K LUT FF

384 3 128 0 0.0% 3.93% 16.36% 5.23%

192 3 64 2 0.0% 5.0% 16.52% 5.27%

128 4 32 4 0.0% 5.0% 16.76% 5.28%

96 6 16 8 0.0% 5.0% 17.01% 5.3%

80 10 8 16 0.0% 5.0% 17.44% 5.34%

72 18 4 32 0.0% 5.0% 18.4% 5.41%

68 34 2 64 0.0% 5.0% 20.09% 5.53%

65 65 1 128 0.0% 5.0% 20.25% 5.3%

Table 4: A comparison of timing and PL resource usage using different unroll factors.

The Table 4 shows a comparison of the timing and the PL resource usage using different loop unrolling factors.

The Equation 17 is no longer valid when the loop unrolling factor is larger than two, because the iteration latency

(Cbody) starts to increase. At the same time, the total amount of PL resources marginally increases.820

As already discussed in Section 2, BRAMs offer high capacity, but access to data is limited to two different addresses

each clock cycle. This is the reason why Cbody begins increasing when the loop unrolling factor is four. On the contrary,

FF based memories allow for multiple reads at different addresses in a single clock cycle, but their number is limited,

even in the largest devices.

In our example (source code 6), two elements of the arrays in1, in2, and out, are accessed at a time (factor=2),

saturating the maximum number of accesses of the BRAMs per clock cycle. So, using the BRAMs, the right equation

should be:

Cloop =

[
Cbody +

(
F − 2

2

)]
× N

F
+ Coverhead (10)

where Cbody is the (constant) iteration latency when no unrolling is applied (3 clock cycles in our example) and F is825

the unrolling factor (power of two).

From this example it is clear that accessing multiple array elements stored in BRAMs each clock cycle prevents

high performance implementations. One possible solution is to divide arrays into smaller BRAM memories, a process

called array partitioning. Vivado HLS performs some array partitioning automatically, but, in general, array
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partitioning is a rather design-specific technique that it is necessary to guide the HLS tool for best results. Using the830

array partition directive, arrays can be explicitly partitioned, resulting in a FF based memory.

The last part of this Section is devoted to present the most widely applied directive-based array-optimizations.

Other Sections will provide enlightening examples where those techniques will be used.

7.2. Array-optimizations

In Vivado HLS arrays are usually synthesized into memories, which are mapped to physical resources on the PL.835

Often, in order to achieve a better performance, there is the need to exert influence over the array-mapping to physical

resources, and the software developer can achieve this through the usage of HLS directive, as detailed below.

Array manipulation can therefore be considered a flexible and powerful technique available to the software devel-

oper, whether the default Vivado HLS implementation aims to minimize the resource utilization, often no maximizing

performances.840

7.2.1. #pragma HLS array map

It combines multiple smaller arrays into a single large array to help reduce BRAM resources.

• motivation: each array is mapped into a block BRAM (or UltraRAM when supported by the device). If many

small arrays do not use the full BRAM 18K, a better use of the BRAM resources is to map many small arrays into

a single larger array;845

• syntax : #pragma HLS array map variable=<name> \

instance=<instance> <mode> offset=<int>

where:

– variable=<name>: required argument that specifies the array variable to be mapped into the new target

array <instance>;850

– instance=<instance>: specifies the name of the new array to merge;

– <mode>: optionally specifies the array map as being either horizontal or vertical. Horizontal mapping

is the default mode, and concatenates the arrays to form a new array with more elements. The vertical

mapping creates a new array with longer words;

– offset=<int>: it specifies an integer value offset to apply before mapping the array into the new array855

<instance>. It applies to horizontal type array mapping only.

7.2.2. #pragma HLS array partition

It partitions an array into smaller arrays or individual elements.

• motivation: multiple small memories or multiple registers instead of one large memory are used, increasing the

amount of read and write ports for the storage.860
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• syntax : #pragma HLS array partition variable=<name> \

<type> factor=<int> dim=<int>

where:

– variable=<name>: required argument that specifies the array variable to be partitioned;

– <type>: it specifies the partition type. Three are supported:865

∗ complete: it decomposes the array into individual elements. This is the default type if <type>

argument is not specified;

∗ cyclic: the array is partitioned cyclically into the number of smaller arrays specified by the factor

argument;

∗ block: it creates smaller arrays from consecutive blocks of the original array. This splits the array into870

factor equal blocks.

– factor=<int>: it specifies the number of smaller arrays that are to be created. For complete partitioning

the factor argument is not necessary;

– dim=<int>: it specifies the dimension to be partitioned in the case of a multi-dimensional array.

Figure 20: The #pragma HLS array partition transforms the array in different ways according to the <type>. In this case factor = 2.

Figure 20 shows how the array partition works:875

• block partitioning creates smaller arrays from consecutive blocks of the original array. This effectively splits the

array into factor equal blocks;
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• cyclic partitioning creates smaller arrays interleaving elements from the original array. If factor=2, as in

Figure 20 , then the element 0 is assigned to the first new array, element 1 to the second new array, and the

element 2 to the first new array;880

• complete partitioning decomposes the original array into temporary individual elements.

7.2.3. #pragma HLS array reshape

It combines array partitioning with vertical array mapping.

• motivation: this pragma combines the effect of the array partition, breaking an array into smaller arrays,

increasing the bit-width of each element. A new array is created with fewer elements but with greater bit-885

width. The purpose is to reduce the number of BRAMs consumed while providing the benefit of partitioning, i.e.

the multiple accesses to the data;

• syntax : #pragma HLS array reshape variable=<name> \

<type> factor=<int> dim=<int>

where:890

– <name>: required argument that specifies the array variable to be reshaped;

– <type>, factor=<int>, dim=<int>: they are the same as for the array partition (see Section 7.2.2).

Figure 21 shows how the array reshape works:

• block reshaping creates smaller arrays from consecutive blocks of the original array. This effectively splits the

array into factor equal blocks, and then combines the blocks into a single array with elements with greater895

bit-width of (word · factor), where word is the width of each original element;

• cyclic reshaping creates smaller arrays interleaving elements from the original array. If factor=2, as in Figure 21

, then the element 0 is assigned to the first new array, element 1 to the second new array, and the element 2 to

the first new array. The final array is a vertical concatenation (word concatenation) of the new arrays into a

single array;900

• complete reshaping decomposes the original array into temporary individual elements and recombines them into

a single element that contains all the elements of the original array (very-wide register).

7.2.4. #pragma HLS data pack

It packs the data fields of a structure (C/C++ struct) into a single scalar with a wider word width.

• motivation: it is used for packing all the element of a structure in a single wide scalar with the benefit of905

reducing the memory required for the variable, and allowing all the members of the structure to be read/written

from/to simultaneously. If the structure contains arrays, then this pragma performs a similar operation as the

array reshape pragma and combines the reshaped array with the other elements in the structure. It is worth

to be noticed that data pack, array partition, and array reshape pragmas are mutually exclusive.
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Figure 21: The #pragma HLS array reshape transforms the array in different ways according to the <type>. In this case factor = 2.

• syntax : #pragma HLS data pack variable=<variable> \910

instance=<name> <byte pad>

where:

– variable=<variable>: is the variable to be packed;

– instance=<name>: optional argument to specify the name of resultant variable after packing;

– <byte pad>: optional argument that specifies whether to pack data on an 8-bit boundary (8-bit, 16-bit,915

24-bit...). The two supported values for this option are:

∗ struct level: it packs the whole structure first, then it pads it upward to the next 8-bit boundary;

∗ field level: first it pads each individual element of the structure on an 8-bit boundary, then it packs

the structure.
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7.2.5. Vector addition using arrays partition920

Coming back to the previous example of the simple code that adds the elements of two arrays, the contention of

the concurrent accesses to the BRAMs can be fixed using the technique of the array partition when the loop is unrolled.

Listing 7: Example code of a loop adding the elements of two arrays. Complete unrolling is applied. Arrays are completely partitioned.

typedef int32_t MyData;

#define BLOCK 128

const unsigned int BSIZE = BLOCK;925

#pragma omp target device(fpga)

#pragma omp task in([BSIZE]in1 , [BSIZE]in2) out([ BSIZE]out)

void acc_vadd(const MyData *const restrict in1 ,

const MyData *const restrict in2 ,930

MyData *const restrict out)

{

#pragma HLS array_partition variable=in1 complete

#pragma HLS array_partition variable=in2 complete

#pragma HLS array_partition variable=out complete935

loop_vector_add_unroll:

for (u_int16_t i=0 ; i<BLOCK ; i++)

{

# pragma HLS unroll factor=BSIZE940

out[i] = (in1[i] + in2[i]);

}

return;945

}

/* ********************* VIVADO HLS REPORT ******************* */

/* Target Board: ZedBoard */

/* *********************************************************** */950

/* DSP48E 0 used | 220 available - 0.0% utilization */

/* BRAM_18K 8 used | 280 available - 2.86% utilization */

/* LUT 15125 used | 53200 available -28.43% utilization */

/* FF 17696 used | 106400 available -16.63% utilization */

/* *********************************************************** */955

Vivado HLS in the source code in Figure 7 completely unrolls the loop and decomposes the arrays into individual

registers. In this way all the elements can be accessed in the same clock cycle. Compared to the full loop-unroll

resource usage of Table 4 (last row), the arrays partition requires fewer BRAMs but a larger amount of FFs. Combining

a full loop-unrolling and a complete array partition, Vivado HLS is able to create a design with a task latency of one

clock cycle, a 384X speed-up compared to the default implementation.960

In general, if Vivado HLS fails to satisfy an optimization directive, it automatically relaxes the optimization and
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seeks to create a design with a lower performance target. If it cannot relax the target, it will halt with an error. In any

case Vivado HLS provides a list of reasons why it was not able to satisfy the higher performance target. However, it

is a good rule to always inspect carefully the HLS Analysis Synthesis estimates to check if the optimization directives

have been fully applied.965

7.3. Vivado HLS coding examples

The Vivado Design Suite installation provides examples of various coding techniques. Coding examples are usually

in Vivado/20XX.X/examples/coding folder.

8. Algorithm case studies

This section outlines the various optimizations and techniques you can use to direct Vivado HLS to produce a micro-970

architecture that satisfies the desired performance and area goals. The source codes of the examples are available on

GitLab (https://www.ict.inaf.it/gitlab/david.goz/oats-technical-report-ompss_at_fpga.git).

8.1. Running total

A running total is the summation of a sequence of numbers which is updated each time a new number is added

to the sequence, by adding the value of the new number to the previous partial sum. So, if input is a input array of975

values of a given size, then the elements of the output array that contains the running total is evaluated as:

output0 = input0

outputi = outputi−1 + inputi, i = 1, ..., size− 1.

While the algorithm is very simple to implement, its FPGA optimization is possible applying the arguments

discussed in the previous Section 7.

Listing 8: Example code of the naive running total algorithm. Arrays are partitioned in block.

typedef int32_t MyData;

#define BLOCK 128980

const unsigned int BSIZE = BLOCK;

#pragma omp target device(fpga)

#pragma omp task in([BSIZE]in) out([ BSIZE]out)

void accumulation(const MyData *const restrict in ,985

MyData *const restrict out ,

const u_int32_t el)

{

#pragma HLS inline off990

static MyData sum;
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out [0] = ((el == 0) ? in[0] : (sum + in[0]));

995

loop_acc:

for (u_int16_t i=1 ; i<BLOCK ; i++)

{

out[i] = (out[i - 1] + in[i]);

}1000

sum = out[BLOCK - 1];

return;

}1005

/* ********************* VIVADO HLS REPORT ******************* */

/* Target Board: ZedBoard */

/* *********************************************************** */

/* DSP48E 0 used | 220 available - 0.0% utilization */1010

/* BRAM_18K 8 used | 280 available - 2.86% utilization */

/* LUT 8107 used | 53200 available -15.24% utilization */

/* FF 5115 used | 106400 available - 4.81% utilization */

/* *********************************************************** */

The code listed in 8 is the naive FPGA implementation of the running total algorithm. The input and output1015

arrays (the first contains the values and the second the partial summation) are divided in chunks of size BLOCK

(fixed to 128), so the accelerator is called size/BLOCK times, where size is the number of elements of the input

array. Each time the accelerator is called, the first element of the output chunk must be initialized before starting to

evaluate the partial summation; if it is the first chunk of data, then the first element of the output is simply initialized

as out[0] = in[0], otherwise a static variable (its value is preserved between function calls) is used to store the last1020

element of the output block.

Without applying HLS optimizations, the resources usage is reported in the Listing 8, and the analysis perspective

in Figure 22. Every time the accelerator is called, three clock cycles are needed to set the first element of the output

block. The loop (labelled as loop acc) is the most time consuming task, with an iteration latency of three clock cycles,

and a total latency of 381 clock cycles (the trip count is 127).1025

The loop pipelining is the first optimization that we try in order to increase the throughput of the design. The

Figure 23 shows the analysis perspective adding the #pragma HLS pipeline II=1 to the loop labelled as loop acc.

Two operations are shown in red. These are conflicts (out load 1(read) and node 34(write) operations), which have

a dependency between loop iterations, and indeed the achievable initiation interval is two clock cycles instead of one.

During the scheduling process, Vivado HLS issues a warning, as shown in Figure 24, saying that it is unable to enforce1030

a carried dependence constraint (II=1) between store and load operations on the same array (the out array in the

source code 8). With a double-click on any of these red operations and the Critical Pipeline Dependence Information

windows opens, showing two iterations of the loop over multiple clock cycles. The first iteration of the loop shows

the states in which the operations occur. The read in states 4 and 5, and the write in state 5. The operation in the
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Figure 22: Vivado HLS Analysis Perspective of the naive running total algorithm listed in the Listing 8.

next iteration must start 1 cycle after this, because the second read cannot occur until the first write has finished:1035

the operations in each iteration of the loop are to a different address and only one address can be applied at the same

time.

The target II=1 can be achieved by splitting the out array into multiple smaller arrays, allowing the load of one

elements of the out array in one clock cycle. Table 5 summarizes timing and PL resource usage using different #pragma

HLS.1040

In our example, loop-carry dependence, i.e. the same element is accessed in different loop iteration, is obvious.

In complex algorithms automatic dependence analysis can be too conservative and fail to ruling out false dependen-

cies. The DEPENDENCE HLS pragma23 allows the programmer to explicitly specify the dependence and resolve a false

dependence. Specifying a false dependency, when in fact the dependency is true, can result in incorrect hardware.

Indeed, in our code if inside the loop the "#pragma HLS dependence variable=out inter false" is specified, then1045

the resulting hardware is incorrect and the check test fails.

23HLS pragma reference: https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/

ug1253-sdx-pragma-reference.pdf
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Figure 23: Vivado HLS Analysis Perspective of the pipeline version of the running total algorithm listed in the Listing 8. Red indicates

conflicts. Clicking the red cycles it is possible to see where the conflicts are.

Figure 24: Vivado HLS warnings.

The careful reader may notice that there is a relatively easy way to rewrite the code avoiding the loop-carry

dependence. The accumulation can be performed on a separate scalar variable (using only a register that stores the

accumulated value), rather than reading the previous value back from the array, so avoiding one memory access to

the array, as shown in the code listed in 9. This trick allows to achieve a pipeline with II=1 without using array1050

partitioning and saving FPGA resources.

Listing 9: Code for implementing an optimized running total algorithm. Arrays are partitioned in block.

typedef int32_t MyData;

#define BLOCK 128

const unsigned int BSIZE = BLOCK;

1055

#pragma omp target device(fpga)
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TIMING (clock cycle) HSL pragmas PL RESOURCES

Function

latency

Loop

latency

Iteration

latency

Initiation

interval

Trip

count
Optimization DSP48E BRAM 18K LUT FF

385 381 3 - 127 none 0.0% 2.86% 15.24% 4.81%

259 254 3 2 127 - pipeline II=1 0.0.% 2.86% 15.31% 4.79%

131 127 2 1 127

- pipeline II=1

- out array partition

cyclic factor=32

0.0% 2.5% 21.61% 8.58%

131 127 2 1 127

- pipeline II=1

- out array partition

block factor=32

0.0% 2.5% 21.6% 8.58%

131 127 3 1 127

- pipeline II=1

- out array partition

complete

0.0% 2.5% 27.2% 12.5%

129 127 2 1 127

- pipeline II=1

- out array partition

complete

- in array partition

complete

0.0% 2.14% 27.08% 16.27%

65 - - - - - unroll 0.0% 3.57% 28.11% 6.73%

42 - - - -

- unroll

- out array partition

complete

- in array partition

complete

0.0% 2.14% 29.73% 23.87%

Table 5: A comparison of timing and PL resource usage using different #pragma HLS applied to the running total algorithm.

#pragma omp task in([BSIZE]in) out([ BSIZE]out)

void accumulation(const MyData *const restrict in ,

MyData *const restrict out ,

const u_int32_t el)1060

{

#pragma HLS inline off

static MyData sum;1065

MyData A = ((el == 0) ? in[0] : (sum + in[0]));

out [0] = A;

1070

loop_acc:

for (u_int16_t i=1 ; i<BLOCK ; i++)

{
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# pragma HLS pipeline II=1

1075

A += in[i];

out[i] = A;

}

sum = out[BLOCK - 1];1080

return;

}

/* ********************* VIVADO HLS REPORT ******************* */1085

/* Target Board: ZedBoard */

/* *********************************************************** */

/* DSP48E 0 used | 220 available - 0.0% utilization */

/* BRAM_18K 8 used | 280 available - 2.86% utilization */

/* LUT 8107 used | 53200 available -15.29% utilization */1090

/* FF 5115 used | 106400 available - 4.84% utilization */

/* *********************************************************** */

This example shows that the HLS compiler is not able to automatically optimize the memory loads and stores of a

single basic block. However, if the unroll of the original loop (code listed in 8) is performed, HLS is able to eliminate

most of the read operations of the out array within the body loop, but still not achieving the same performance as1095

when array partition is used.

8.2. Matrix-Vector multiplication

The matrix-vector multiplication is the core of many algorithms, e.g. the Discrete Fourier Transform. The source

codes of the examples are available on GitLab (https://www.ict.inaf.it/gitlab/david.goz/oats-technical-report-ompss_

at_fpga.git).1100

Listing 10: Example code of the matrix-vector algorithm. Arrays are partitioned in chunks. The source code in the repository is under the

folder matrix vector.

#define BLOCK 32

const unsigned int BSIZE = BLOCK;

#if defined(_SMP_)

#pragma omp target device(smp)1105

#else

#pragma omp target device(fpga)

#endif

#pragma omp task in ([ BSIZE]matrix , [BSIZE]vector) inout ([1] out)

void acc_matrix_vector_mul(const MyData *const restrict matrix ,1110

const MyData *const restrict vector ,

MyData *const restrict out)

{
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# pragma HLS inline off

1115

MyData local_out = (MyData)0.0;

loop_matrix_vector_product:

for (u_int16_t i=0 ; i<BLOCK ; i++)

{1120

local_out += (matrix[i] * vector[i]);

}

out [0] += local_out;

1125

return;

}

void hw_matrix_vector_mul(const MyData *const restrict matrix ,

const MyData *const restrict vector ,1130

MyData *const restrict out ,

const u_int32_t size)

{

const u_int32_t s2ize = (size * size);

1135

for (u_int32_t el=0 ; el <s2ize ; el+= BLOCK)

{

const u_int32_t vec_index = (el % size);

const u_int32_t out_index = (el / size);

1140

acc_matrix_vector_mul (& matrix[el], &vector[vec_index], &out[out_index ]);

# pragma omp taskwait

}

1145

return;

}

The basic code is shown in the listing 10. We use a custom data type called MyData, that through the discussion

is mapped into int32, float, and double. The hw matrix vector mul running on the host has three arguments. The

first two arguments MyData *matrix and MyData *vector are the input pointers to the matrix and the vector. If size1150

is the dimension of the output vector, then for the matrix is allocated a buffer of (size * size * sizeof(MyData))

bytes, so the matrix(i,j) element is mapped as matrix[(i * size) + j]. The host function hw matrix vector mul

splits the calculation in chunks of size BLOCK (whose value is set at 32), with the constraint (size % BLOCK == 0).

The function acc matrix vector mul is the FPGA target kernel. It performs the scalar product between the rows of the

matrix and the vector in chunks. The loop labelled as loop matrix vector product is the core loop, with its ranges hard1155

coded, allowing us to apply HLS optimizations (unrolling is not possible if loop ranges are not specified at compile

time) and/or obtain HLS estimates.
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Figure 25: Vivado HLS resource estimates for default implementation of the matrix-vector algorithm with integer (int32) data type. Source

code is listed in Figure 10.

Figure 26: Vivado HLS performance estimates for default implementation of the matrix-vector algorithm with integer (int32) data type.

Source code is listed in Figure 10.
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Figure 25 shows a sequential (hereafter default, i.e. without HLS directives) architecture for the matrix-vector

multiplication with one multiply and one addition operation instantiated (tmp 3 fu 102 and local out 1 fu 106 in

Figure 25 at C3 and C4, respectively). Logic is created to access the matrix and the input vector that are stored in1160

BRAMs. It does not consume a lot of area, as expected, but the task latency and task interval are relatively large, as

shown in Figure 26. Using 32-bit integer data type, the read requires two clock cycles (as already seen in previous

examples), while multiply and adder (accumulation) operations are performed in one clock cycle (so the iteration

latency is four clock cycles).

Basically, if each read operation takes CR clock cycles (one element of either the matrix or the vector), each adder

operation takes CA clock cycles, and each multiply operation takes CM clock cycles, then the loop latency, Cd
L (default

loop), is:

Cd
L = BLOCK · (CR + CM + CA) = BLOCK · Cd

I (11)

where Cd
I = (CR + CM + CA) is the (default) iteration latency.1165

The expected task latency (i.e. a single call to the synthesized kernel), Cd
T , is:

Cd
T = Cd

L + Coverhead (12)

where Coverhead is the clock cycles required to update (read and write) the out variable. From the synthesis perfor-

mance analysis shown in Figure 26 this operation requires one clock cycle.

The kernel is called S2/BLOCK times, where S is the size of the output vector. Finally the total matrix-vector

(default) multiplication latency, Cd
M−V , is:

Cd
M−V = Cd

T ·
(

S2

BLOCK

)
(13)

The minimum latency is achieved when BLOCK = S.

It is worth to be noticed that the latency of moving data from/to the main host memory cannot be inferred by

Vivado HLS, because it depends on the interaction between the PL and the PS.1170

8.2.1. Pipelining

The matrix-vector algorithm has substantial opportunity to exploit parallelism. In the default implementation

the expression local out += (matrix[i] * vector[i]) is executed in each iteration of the loop. The variable

local out is being reused in each iteration and takes a new value, since it is an accumulator. Looking at Figure 26,

it is apparent that while the hardware is performing the multiply and add operations on the i-th elements, the read

operations can start on the next elements. Through the #pragma HLS pipeline II=1 it is easy to achieve a loop

pipelined behaviour with the initiation interval of one clock cycle, requiring few more FPGA resources. The pipeling

does not affect the iteration latency (it is still four clock cycles), but significantly reduces the loop latency, from Eq 11

to:

Cp
L = Cd

I + II(BLOCK − 1) (14)

Hence, using the pipelining the achievable speedup can be estimated as:

speedup =
Cd

M−V

Cp
M−V

=

(
Cd

I ·BLOCK
)

+ Coverhead

Cd
I + II (BLOCK − 1) + Coverhead

(15)

In our case Cd
I = 4, Coverhead = 1, II = 1, BLOCK = 32, so speedup ' 3.58.
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8.2.2. Unrolling

We always focus on the loop where the scalar product is performed. The maximum amount of parallelism can

be achieved unrolling the loop so that multiplications can be performed simultaneously, and the summations can be1175

performed using an adder tree.

Figure 27: A data flow graph of the expression resulting from the unrolled loop performing the matrix-vector scalar product.

A sketch of the data flow of the computation (assuming BLOCK = 4) is shown in Figure 27. Assuming a complete

unrolling, all the reads and multiplications should be executed in parallel, while the additions with a tree flow. In

this scenario, BLOCK multipliers and BLOCK/2 adders must be instantiated in the PL. Hence, the resulting loop

latency is:

Cu
L = Cd

R + Cd
M +

(
Cd

A · log2(BLOCK)
)

(16)

and Cu
T = (Cu

L + Coverhead) is the task latency, accordingly. The achievable speedup using the unrolling can be

estimated as:
Cd

M−V

Cu
M−V

=
BLOCK

(
Cd

R + Cd
M + Cd

A

)
+ Coverhead

Cd
R + Cd

M +
(
Cd

A · log2(BLOCK)
)

+ Coverhead

(17)

Using Cd
R = 2, Cd

M = Cd
A = Coverhead = 1, and BLOCK = 32, then speedup ' 14.

However, applying full unrolling to the loop, the Vivado HLS performance analysis, shown in Figure 28, reveals

a different behaviour, i.e. the Eq. 17 is not valid. At most two elements of both the matrix and the vector are read

concurrently (the read requires always two clock cycles), so all the multiplications cannot be performed in the same1180

clock cycle. Indeed, only two multipliers are instantiated by Vivado HLS, as shown in Figure 29, and are shared

through the kernel execution. Array partitioning is necessary in order to fully exploit the unrolling, because the BRAMs
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Figure 28: HLS performance analysis when #pragma HLS unroll is applied.

allow at most two concurrent accesses. Applying complete array partitioning, so moving data from BRAMs to FFs,

allows multiple reads at different addresses in a single clock cycle. It is also possible to read, modify, and write a

flip-flop based memory in a single clock cycle, instead BRAMs read operation must have a latency of at least one clock1185

cycle. In our case, the size of data to be stored in FFs is quite small (i.e. BLOCK = 32), so it is a good choice to apply

this technique to obtain high performance implementation. As with many other directive-based optimizations, the

same result can also be achieved by rewriting the code manually. In general, it is preferred to use the tool directives

since it keeps the code easy to maintain and it avoids introducing bugs. Using complete array partitioning, Vivado

HLS performance analysis shows that the kernel latency is now of three clock cycles, i.e. the scalar product and the1190

output are performed in only three clock cycles, even better than the predicted speedup of Eq. 17, because reads,

multiplies, and adders are overlapped. Hence, in summary, with only unrolling the kernel achieves a speedup (respect
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Figure 29: HLS resource analysis when #pragma HLS unroll is applied.

the default implementation) of ' 6.5x, adding the array partitioning it increases up to ' 43x , while the predicted

speedup of Eq. 17 is ' 14x.

Table 6 shows a comparison of timing and PL resource usage using different #pragma HLS directives applied to the1195

matrix-vector algorithm.

Data Type : int32

TIMING (clock cycles) HSL pragmas PL RESOURCES

Function

latency

Loop

latency

Iteration

latency

Initiation

interval

Trip

count
Optimization DSP48E BRAM 18K LUT FF

129 128 4 - 32 none 1.36% 3.57% 16.05% 5.29%

36 34 4 1 32 - pipeline II=1 1.36% 3.57% 16.13% 5.32%

20 - - - - - unroll 2.73% 4.29% 17.71% 5.66%

3 - - - -

- unroll

- matrix array partition

complete

- vector array partition

complete

43.64% 2.86% 18.82% 8.21%

Table 6: A comparison of timing and PL resource usage for integer data type using different HLS optimizations applied to the matrix-vector

algorithm.

We experiment also with other data types applying the same HLS directives. Now, as shown in Figure 30, using

single-precision (float) data type, the iteration latency of the default implementation takes 16 clock cycles, 4x the

integer version. The different timing occurs in the multiply adder block, which performs a multiplication of two

operands and adds the full-precision product to a third operand (CM = 4, CA = 5). Due to the fadd (floating point1200

add) operation the pipeline cannot start in one clock cycle, but in 5 at least, regardless the arrays partition.

When unrolling and complete data partition are applied, Vivado HLS cannot perform concurrent reads and mul-

tiplications. The read can start while the fadd operation of the previous element of arrays is performing, as shown

in Fig. 31. The reader has not to infer that this is a general scenario with floating point arithmetic. The resulting

hardware is the combination of the ability of Vivado HLS to map algorithm into hardware resources (helped by the1205
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Figure 30: Vivado HLS resource estimates for default implementation of the matrix-vector algorithm with single-precision (float) data

type. Source code is listed in Figure 10.

HLS directives added by the programmer) and the compute capability of the underlying FPGA.

The next Chapter is devoted to addressing how to estimate the floating-point capability of an FPGA.

Figure 31: Vivado HLS resource estimates for unroll and complete data partition implementation of the matrix-vector algorithm with

single-precision (float) data type. Source code is listed in Figure 10.

Table 7 summarizes the results for the single-precision implementation, while Table 8 reports numbers for double-

precision arithmetic.

8.2.3. Matrix-vector multiplication optimizations1210

The source code listed in 10 performs the scalar product between the rows of the matrix and the vector in chunks.

Every time the kernel is called, the PL gets (((2 * BLOCK) + 1 ) * sizeof(MyData)) bytes as input, and returns

(sizeof(MyData)) bytes as output. To accomplish the entire calculation the kernel is called (size2 / BLOCK) times,

where size is the dimension of the output vector. Then, the total memory traffic (input and output) to perform the
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Data Type : float

TIMING (clock cycles) HSL pragmas PL RESOURCES

Function

latency

Loop

latency

Iteration

latency

Initiation

interval

Trip

count
Optimization DSP48E BRAM 18K LUT FF

357 352 11 - 32 none 2.27% 3.57% 17.35% 5.66%

171 165 11 5 32 - pipeline II=1 2.27% 3.57% 17.37% 5.66%

170 - - - - - unroll 2.27% 3.57% 19.09% 5.79%

168 - - - -

- unroll

- matrix array partition

complete

- vector array partition

complete

2.27% 2.86% 20.11% 7.82%

Table 7: A comparison of timing and PL resource usage for single-precision data type using different HLS optimizations applied to the

matrix-vector algorithm.

Data Type : double

TIMING (clock cycles) HSL pragmas PL RESOURCES

Function

latency

Loop

latency

Iteration

latency

Initiation

interval

Trip

count
Optimization DSP48E BRAM 18K LUT FF

421 416 13 - 32 none 6.36% 6.43% 20.32% 6.50%

173 167 13 5 32 - pipeline II=1 6.36% 6.43% 20.39% 6.56%

172 - - - - - unroll 6.36% 6.43% 22.12% 6.76%

170 - - - -

- unroll

- matrix array partition

complete

- vector array partition

complete

6.36% 5.0% 21.86% 10.23%

Table 8: A comparison of timing and PL resource usage for double-precision data type using different HLS optimizations applied to the

matrix-vector algorithm.

entire calculation is (in bytes):

T chunk(s, b, α) =
s2

b
(2b+ 1)α (18)

where s is the size, b the BLOCK, and α = sizeof(MyData). The minimum memory traffic is achieved when BLOCK

= size, T chunk
min (s, s, α) = s(2s + 1)α. Regarding the arithmetic operations, the kernel performs the following total

operations:

W chunk(s, b, [⊗], [⊕]) =
s2

b
(b[⊗] + (b+ 1)[⊕]) (19)

where [⊗] and [⊕] are the multiplication and addition operations, respectively. The arithmetic intensity, I, is the ratio

of the operations to the memory traffic. In this case:

Ichunk(b, α, [⊗], [⊕]) =
W chunk

T chunk
=
b[⊗] + (b+ 1)[⊕]

α(2b+ 1)
(20)

Another approach is to decompose the matrix in blocks (sub-matrices), whose size is PL dependent. The source

62



code of the matrix-vector-block algorithm is listed in 11. The host, through the function hw matrix vector mul, splits

the matrix in blocks and issues the kernel, called acc m v block, that performs on the PL the calculation. The scalar

product of the old kernel is now nested inside a loop over the columns of the sub-matrix (labelled as loop data).

The #pragma HLS pipeline II=1 is applied to the loop, then loop unrolling of the nested loop (loop dot product) is1215

automatically performed by Vivado HLS.

The latest rises the warning during the compilation: unable to schedule ’load’ operation on array ’matrix’ due to

limited memory ports. Please consider using a memory core with more ports or partitioning the array ’matrix’. In

the case of integer implementation, the pipeline has II=16. The II=1 can be achieved partitioning the arrays. Since

the inner loop is fully unrolled (by a factor of BLOCK because of the pipeline of the outer loop), the programmer1220

has to guarantee that no more than two addresses in the arrays are accessed per loop iteration. While the vector is

allocated as a unique chunk of memory, the sub-matrix is allocated as a chunk of contiguous memory following the row-

major order (also called C-order), a common method of storing multidimensional arrays in linear storage. The cyclic

partitioning by a factor of BLOCK/2 guarantees that all columns of the sub-matrix can be accesses simultaneously.

The same line of reasoning is applied to the vector. Moreover, using the cyclic partitioning the iteration latency is1225

six clock cycles, two of them needed to load data (stored on BRAMs). The complete sub-matrix partitioning allows an

iteration latency of five clock cycles (only one clock cycle is required to load data from FFs), but the FFs utilization

grows up to 39.33%.

In this case the kernel is issued (size / BLOCK)2 times to accomplish the entire calculation, i.e. BLOCK times

less than the previous implementation. Every time the kernel is issued, the PL gets ((BLOCK2 + (2 * BLOCK)) *

sizeof(MyData)) bytes as input, and returns (BLOCK * sizeof(MyData)) bytes as output. In this case the total

memory traffic is (in bytes):

T block(s, b, α) =
s2

b
(b+ 3)α (21)

The minimum memory traffic is achieved when BLOCK = size, so T block
min (s, s, α) = s(s+ 3)α. The kernel performs the

following total operations:

W block(s, b, [⊗], [⊕]) =
s2

b
(b[⊗] + (b+ 1)[⊕]) = W chunk(s, b, [⊗], [⊕]) (22)

So the arithmetic intensity is:

Iblock(b, α, [⊗], [⊕]) =
W block

T block
=
b[⊗] + (b+ 1)[⊕]

α(b+ 3)
(23)

Comparing both approaches when BLOCK = 32,

T chunk(s, 32, α)

T block(s, 32, α)
' 1.9

the second reduces the total memory traffic between the PS and the PL by almost a factor two. So, the resulting

arithmetic intensity of the second approach is almost twice the first.1230

The reader has always to keep in mind that the estimation of the arithmetic intensity of one kernel is fundamental

in order to provide performance estimates of that kernel running on a specific architecture (or device), by showing

inherent hardware limitations, and potential benefit and priority of optimizations. The Roofline model is an intuitive
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visual performance model by which it is possible to compare the machine (device) peak performance, the machine

peak bandwidth, and the kernel arithmetic intensity. Usually the machine peak performance can be derived from1235

architectural manuals, the machine peak bandwidth is instead obtained via benchmarking. Since an FPGA has not

a fixed architecture, its Roofline might appear misleading. However, the Roofline model has been extended to better

suit specific architectures and the related characteristics, such as FPGAs. Roofline model applied to the FPGAs is

discussed in Section 9.

The estimation of the kernel arithmetic intensity can give insights if that kernel is compute-bound or memory-1240

bound on the target machine (device). Typically, on accelerators, like GPUs or FPGAs, the best benefit in terms of

performance is achieved by a compute-intensive kernel, due to the massively-parallel architecture of such devices.

Listing 11: Example code of the matrix-vector-block algorithm. Arrays are partitioned in block. Pipeline and array partition are applied

in order to achieve II=1.

#define BLOCK 32

const unsigned int BSIZE = BLOCK;

1245

#if defined(_SMP_)

#pragma omp target device(smp)

#else

#pragma omp target device(fpga)

#endif1250

#pragma omp task in ([ BSIZE*BSIZE]matrix , [BSIZE]vector) inout([BSIZE]out)

void acc_m_v_block(const MyData *const restrict matrix ,

const MyData *const restrict vector ,

MyData *const restrict out)

{1255

# pragma HLS inline off

# pragma HLS array_partition variable=matrix cyclic factor =16

# pragma HLS array_partition variable=vector cyclic factor =16

1260

/* loop over rows of blockMatrix */

loop_data:

for (u_int16_t i=0 ; i<BLOCK ; i++)

{

# pragma HLS pipeline II=11265

MyData local_out = (MyData)0.0;

loop_dot_product:

for (u_int16_t j=0 ; j<BLOCK ; j++)1270

{

local_out += (matrix [(i * BLOCK) + j] * vector[j]);

}

/* store result */
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out[i] += local_out;1275

}

return;

}

1280

void copy_block(const MyData *const restrict matrix ,

MyData *const restrict block ,

const u_int32_t matrix_size ,

const u_int32_t row ,

const u_int32_t col)1285

{

for (u_int32_t i=0 ; i<BLOCK ; i++)

{

const u_int32_t ii = (i + row);

1290

for (u_int32_t j=0 ; j<BLOCK ; j++)

{

const u_int32_t jj = (j + col);

block[(i * BLOCK) + j] = matrix [(ii * matrix_size) + jj];1295

}

}

return;

}1300

void hw_matrix_vector_mul(const MyData *const restrict matrix ,

const MyData *const restrict vector ,

MyData *const restrict out ,

const u_int32_t size)1305

{

/* init to zero out */

memset(out , 0, (sizeof(MyData) * size));

for (u_int32_t bi=0 ; bi <size ; bi+=BLOCK)1310

{

for (u_int32_t bj=0 ; bj <size ; bj+=BLOCK)

{

/* local block of matrix */

MyData blockMatrix[BLOCK2 ];1315

/* copy block of matrix from global to local memory */

copy_block(matrix , blockMatrix , size , bi, bj);

/* perform matrix_vector_block multiplication on hardware */1320

acc_m_v_block(blockMatrix , &vector[bj], &out[bi]);
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# pragma omp taskwait

} /* bj */

} /* bi */1325

return;

}

/* ******************* VIVADO HLS REPORT ******************* */1330

/* Target Board: ZedBoard */

/* *********************************************************** */

/* DSP48E 96 used | 220 available -43.64% utilization */

/* BRAM_18K 42 used | 280 available -15.00% utilization */

/* LUT 11011 used | 53200 available -20.70% utilization */1335

/* FF 9034 used | 106400 available - 8.49% utilization */

/* *********************************************************** */

8.3. Matrix-matrix multiplication

The matrix-matrix multiplication is a fundamental algorithm widely applied in many research areas and, for that

reason, it is usually discussed when the reader is introduced to either a new computational framework or device.1340

8.3.1. Background

The matrix multiplication is a binary operation that combines two matrices into a third. Basically the operation

is a recursive scalar product between the vectors that compose the two matrices. Starting from the matrices A, with

dimensions n×m, and B, with dimensions m× p, the matrix product creates an n× p matrix C defined as:

Ci,j =

m∑
k=1

Ai,kBk,j (24)

In order to estimate the FLOPs, we need to count all the math operations (i.e. multiplications and sums) required

to obtain the result. Following the Eq. 24, to compute all the elements of C, n × p operations are needed to be

performed (i.e. one for each Cij element), where each operation involves m multiplications and (m− 1) sums. So, the

total number of FLOPs needed is given by (n× p× (2m− 1)). In case of square matrices (i.e. n = p = m) then the1345

total number of FLOPs is (2n3 − n2).

In order to estimate the memory traffic, we need to take into account the data of input and output. Strictly

speaking, we should count all the memory accesses needed to obtain the result. However, the memory traffic is

heavily dependent on the properties of the chosen platform/device, such as for instance the structure of the cache

hierarchy in case of CPUs. So, we define the memory traffic as the total bytes of input and output of the kernel,1350

i.e. α [(n×m) + (m× p) + (n× p)], where α is the number of bytes of the data type. Thus, for square matrices, the

memory traffic is 3αn2.

To get the computational intensity (FLOPs/bytes), it is needed to divide the count of FLOPs by the memory

traffic in bytes. Finally, for square matrices we get:

I(n, α) =
2n3 − n2

3αn2
≈ 2n

3α
(when n is large). (25)
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Listing 12: The common loop structure for matrix multiplication.

void matrixmul(Mydata A[N][M],

MyData B[M][P],

MyData C[N][P])1355

{

row: for (int i=0 ; i<N ; i++)

{

col: for (int j=0 ; j<P ; j++)

{1360

MyData ABij = (MyData)0.0;

product: for (int k=0 ; k<M ; k++)

{

ABij += (A[i][k] * B[k][j]);1365

}

C[i][j] = ABij;

} /* cols */

} /* rows */1370

return;

}

The most common method to compute the matrix multiplication is using three nested loops, as in the source code

listed 12. The outer for loops, labeled as row and col, iterate across the rows and columns of the output matrix C.1375

The innermost for loop computes the dot product of one row of A and one column of B. It is important to note

that each dot product is a completely independent set of computations that yields one element of C. Basically, the

calculation performs P matrix-vector multiplications, one for each column of the matrix B.

8.3.2. Block matrix multiplication

A matrix can be thought as composed by sub-matrices, called blocks. Hence, when we talk about matrix multipli-1380

cation, in Equation 24, we could think about single elements Ai,k and Bk,j as blocks of the parent matrices A and B.

In this case, in order to compute the block Ci,j , it is needed to compute two block products and two matrix sums, as

shown in Figure 32.

Matrix blocking turns out to be a very useful approach for a number of reasons. First is that blocking is an easy

way to maintain the common structure for matrix multiplication (listed in 12) and experiment with some optimizations1385

already used in previous Sections of the technical report. Second is that the size of the block can be chosen according

to the hardware resources available on the FPGA instead of the size of the problem. Another advantage is that we

can operate on the data in parallel using multiple devices (e.g. some blocks are handled by the PS and others by the

PL) or we can exploit multiple instances inside the PL (e.g. it is like to exploit multiple FPGAs).

We start from a source code that allows to handle matrices of arbitrary size and performs the calculation in blocks,1390

listed in 13.
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Figure 32: Blocked decomposition of the matrix multiplication of two 2 x 2 matrices. The entire AB product is decomposed into four

matrix multiply operations (only the first is shown) operating on a 1 x 2 block of A and 2 x 1 block of B. C00 = A00B00 + A01B10.

Listing 13: The structure for blocking matrix multiplication.

#define BLOCK 4

#define BLOCK2 (BLOCK * BLOCK)

typedef int32_t MyData;

const unsigned int B2SIZE = (BLOCK * BLOCK);1395

#if defined(_SMP_)

#pragma omp target device(smp)

#elif (_SMP_FPGA_)

#pragma omp target device(smp , fpga)1400

#else

#pragma omp target device(fpga)

#endif

#pragma omp task in([ B2SIZE]A, [B2SIZE]B) out([ B2SIZE]C)

void acc_block_block_mul(const MyData *const restrict A,1405

const MyData *const restrict B,

MyData *const restrict C)

{

# pragma HLS inline off

1410

loop_row:

for (u_int8_t row=0 ; row <BLOCK ; row ++)

{

loop_col:

for (u_int8_t col=0 ; col <BLOCK ; col ++)1415

{

MyData sum = (MyData)0.0;

loop_product:

for (u_int8_t k=0 ; k<BLOCK ; k++)1420
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{

sum += (A[(row * BLOCK) + k] * B[(k * BLOCK) + col]);

}

C[(row * BLOCK) + col] = sum;

} /* loop col */1425

} /* loop row */

return;

}

1430

void hw_matrix_matrix_block_mul(const MyData *const restrict A,

const MyData *const restrict B,

MyData *const restrict C,

const u_int32_t size)

{1435

for (u_int32_t bi=0 ; bi <size ; bi+=BLOCK)

{

for (u_int32_t bj=0 ; bj <size ; bj+=BLOCK)

{

/* initialize to zero the block */1440

init_block(C, size , bi, bj);

for (u_int32_t bk=0 ; bk <size ; bk+=BLOCK)

{

/* local block of matrix A */1445

MyData blockA[BLOCK2 ];

/* local block of matrix B */

MyData blockB[BLOCK2 ];

/* local block of matrix C */

MyData blockC[BLOCK2 ];1450

/* copy block of A from global to local memory */

copy_block(A, blockA , size , bi, bk);

/* copy block of B from global to local memory */

copy_block(B, blockB , size , bk, bj);1455

/* perform block multiplication */

acc_block_block_mul(blockA , blockB , blockC);

# pragma omp taskwait1460

/* store blockC to global memory */

store_block(blockC , C, size , bi, bj);

} /* bk */

} /* bj */1465

} /* bi */
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return;

}

The host through the function hw matrix matrix block mul splits the matrices A and B in blocks, called blockA and1470

blockB, respectively. After that, the kernel acc block block mul is issued and the calculation is performed on the smp,

or fpga, or both (selected by the user through the Makefile). In further coming Technical Report about OmpSs@FPGA

ecosystem we will describe more in detail the OmpSs directives that allow to exploit multiple devices.

The size of the block is chosen at compile time, and, as discussed above, it is a trade-off between the size of the

problem and the available hardware resources.1475

The Table 9 shows a comparison of timing and PL resources usage for integer data type using different HLS

optimizations applied to the source code listed in 13, when BLOCK = 4.

We start our optimization process with the usual #pragma HLS pipeline II=1 applied to the loop col loop. The

result is that the inner-most loop, labelled as loop product, is automatically fully enrolled by Vivado HLS. The loop

trip count (referred to loop row) becomes 16 because Vivado HLS automatically performs a loop flattening. This1480

optimization allows nested loops (in our case labelled as loop row and loop col) to be flattened into a single loop

hierarchy with improved latency. In the RTL implementation, it requires one clock cycle to move from an outer loop

to an inner loop, and from an inner loop to an outer loop. Flattening nested loops allows them to be optimized

as a single loop. This saves clock cycles, potentially allowing for greater optimization of the loop body logic. This

optimization is automatically applied by Vivado HLS because only the inner-most loop col loop has loop body content,1485

i.e. the unrolled loop product. Vivado HLS makes available the pragma HLS loop flatten to be put in the source

code within the boundaries of the nested loop. The pragma takes the optional off keyword that prevents flattening

from taking place.

Without any array partitioning/reshaping of the matrices it is not possible to achieve an II=1 due to the limited

memory port accesses, as expected. In the body of loop product the matrix A is accessed by rows, while the matrix1490

B is accessed by columns, and both are stored in row-major order (i.e. the consecutive elements of a row reside

next to each other). Thus, the matrix A requires a cyclic partitioning/reshaping, while the matrix B requires a

block partitioning/reshaping, both using a factor=BLOCK. Through this approach it is possible to achieve a II=1

with the same function latency, but with different FPGA resource usage. It is worth noticing that reshaping is more

resource-eager than partitioning with the same function latency, as shown in Table 9.1495

8.4. Histogram

Creating an histogram is a widely used function in many fields, e.g. image processing, and database processing.

Listing 14: Example code of the naive histogram algorithm. Input array (in) is partitioned in blocks and the local histogram is copied out

only at the last iteration.

typedef int32_t MyData;

#define BLOCK 128

const unsigned int BSIZE = BLOCK;1500

#pragma omp target device(fpga)
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Data Type : integer (int32)

TIMING (clock cycles) HSL pragmas PL RESOURCES

Function

latency

Loop

latency

(loop row)

Iteration

latency

(loop row)

Initiation

interval

(loop row)

Trip

count

(loop row)

Optimization DSP48E BRAM 18K LUT FF

297 296 74 - 4 none 1.36% 2.86% 16.64% 5.47%

36 34 5 2 16
loop col:

- pipeline II=1
2.73% 2.86% 17.06% 5.58%

20 18 4 1 16

loop col:

- pipeline II=1

- A array reshape

cyclic factor=4

- B array reshape

block factor=4

5.45% 2.86% 21.79% 7.03%

20 18 4 1 16

loop col:

- pipeline II=1

- A array partition

cyclic factor=4

- B array partition

block factor=4

5.45% 2.86% 16.98% 6.63%

8 6 4 1 4

loop row:

- pipeline II=1

- A array partition

cyclic factor=4

- B array partition

complete

- C array partition

cyclic factor=4

21.82% 2.86% 20.37% 7.95%

2 - - - -

function:

- pipeline II=1

- A, B, C

array partition

complete

87.27% 2.86% 21.73% 8.43%

Table 9: A comparison of timing and PL resource usage for integer (int32 t) data type using different HLS optimizations applied to the

matrix-matrix-block algorithm. BLOCK = 4. The loop latency, the iteration latency, the initiation interval and the trip count refer to

the outer-most loop labelled as loop row.

#pragma omp task in([BSIZE]in) out([ BSIZE]histog)

void histogram(const MyData *const restrict in,

MyData *const restrict histog ,1505

const u_int8_t copy_out ,

const u_int8_t reset)

{

#pragma HLS inline off1510
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static u_int32_t local_histog[BLOCK ];

if (reset)

{1515

loop_reset:

for (u_int16_t i=0 ; i<BLOCK ; i++)

{

local_histog[i] = 0;

}1520

}

loop_histogram:

for (u_int16_t i=0 ; i<BLOCK ; i++)

{1525

local_histog[in[i]]++;

}

/* copy local_histog to histog */

if (copy_out)1530

{

loop_copy:

for (u_int16_t i=0 ; i<BLOCK ; i++)

{

histog[i] = local_histog[i];1535

}

}

return;

}1540

/* ********************* VIVADO HLS REPORT ******************* */

/* Target Board: ZedBoard */

/* *********************************************************** */1545

/* DSP48E 0 used | 220 available - 0.0% utilization */

/* BRAM_18K 9 used | 280 available - 3.21% utilization */

/* LUT 8372 used | 53200 available -15.74% utilization */

/* FF 5237 used | 106400 available - 4.92% utilization */

/* *********************************************************** */1550

The code, listed in 14, ends up to be very similar to the running total in Section 8.1. The main difference is that

the latest performs one accumulation, while in histogram computes one accumulation for each bin. As expected, when

pipelining the for loop (labelled as loop histogram), it turns out the same problem as with the code in Figure 23. It

is possible to achieve only a loop II of 2 due to load/store memory conflict, as stated by the analysis perspective shown

in Figure 33. This is due to the fact that the algorithm is reading from the histogram and writing to the same address1555
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in every iteration of the loop. Vivado HLS cannot make any assumption on the correlation of the input values. The

worst case happens when the input array contains the same value in two contiguous addresses, so Vivado HLS must

alternate between reads and writes. If the input data never have two consecutive values24, extra information must be

provided to Vivado HLS tool so that it will be able to synthesize a circuit that reads at one location while writing at

the previous one (i.e. different addresses correspond to different values).1560

Figure 33: Vivado HLS Analysis Perspective of the pipeline version of the histogram algorithm listed in the Listing 14. Red indicates

conflicts. Clicking the red cycles it is possible to see where the conflicts are.

In Vivado HLS this is done using the HLS dependence directive, that asserts the function has some preconditions,

i.e. it indicates to Vivado HLS that reads and writes to the local histog array are dependent only in a particular way.

In our case, the inter-iteration dependencies (i.e. dependence between different loop iterations) consist of a read

operation after a write operation (RAW), meaning that the write instruction uses a value used by the read instruction.

The directive allows the programmer to specify the inter-iteration distance for array access. Since the input data never1565

has two consecutive values, than the correct distance is 2, because it could be the case that in[i+ 2] == in[i].

Another way to achieve II=1 in the loop histogram is to partition completely the array local histog using FF

resources, since data written on FF on one clock cycle is available on the next clock cycle. This circuit results in a

large number of FF resources, so that preventing to store large histograms. Table 10 summarizes the timing achieved

and PL resources using the HLS optimizations discussed above.1570

24It is our case since input array is filled with a pseudo-random uniform distribution of values in the range [0, BLOCK), so that two

consecutive values cannot be the same - source code on GitHub repository
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Figure 34: Vivado HLS Analysis Perspective of the pipeline version of the histogram algorithm listed in the Listing 14, adding #pragma HLS

DEPENDENCE variable=local histog inter RAW distance=2 to the body of the function. Conflicts of Figure 33 disappear, achieving II=1

on loop histogram.

Data Type : int32

TIMING (clock cycles) HLS pragmas PL resources

Loop

latency

Iteration

latency

Initiation

interval

Trip

count
Optimization DSP48E BRAM 18K LUT FF

512 4 - 128 None 0.0% 3.21% 15.74% 4.92%

256 3 2 128 - pipeline II=1 0.0% 3.21% 15.87% 4.89%

129 3 1 128

- pipeline II=1

- dependence variable=local histog

inter RAW distance=2

0.0% 3.57% 15.83% 4.88%

129 3 1 128

- pipeline II=1

- array partition

variable=local histog complete

0.0% 2.86% 19.0% 8.72%

Table 10: A comparison of timing and PL resource usage for integer data type using different HLS optimizations applied to the histogram

algorithm listed in 14. Timing refers to the loop histogram loop, while resource usage for the whole synthesized kernel.
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Up to now HLS optimizations rely on the fact that it is guaranteed the input data set never has two consecutive

values. However, the general algorithm has to take into account that consecutive values may be the same. In this

case, a possible solution is to use a simple register to perform the histogram accumulation with a minimal amount of

FPGA-resources and delay. Instead, when the input does not contain two consecutive values, the circuit performs a

write and a read at two different addresses of the histogram. The first is needed to store the count of the (i-1)-th1575

element of the input, while the latest performs the load the count of the i-th element of the input array. The code

to accomplish this is listed in 15. The code uses a local variable old value to store the bin for the previous loop

iteration and another local variable acc to store the count for such a bin. Within the loop, the algorithm checks if

the bin is the same as the previous iteration. If so, the accumulator (acc) is incremented, otherwise the accumulator

is store in the histogram at the address relative to the old bin (old value), and then the accumulator is updated and1580

incremented to the correct new value (value) in the histogram.

Listing 15: Example code of the alternative histogram algorithm. The if/else structure attempts to remove the read/write dependency

from the for loop labelled as loop histogram. Input array (in) is partitioned in blocks and the local histogram is copied out only at the

last iteration.

typedef int32_t MyData;

#define BLOCK 128

const unsigned int BSIZE = BLOCK;

1585

#pragma omp target device(fpga)

#pragma omp task in([BSIZE]in) out([ BSIZE]histog)

void histogram(const MyData *const restrict in,

MyData *const restrict histog ,

const u_int8_t copy_out ,1590

const u_int8_t reset)

{

#pragma HLS inline off

1595

static u_int32_t local_histog[BLOCK ];

if (reset)

{

loop_reset:1600

for (u_int16_t i=0 ; i<BLOCK ; i++)

{

local_histog[i] = 0;

}

}1605

/* ************************************************************ */

/* load the first value */

MyData old_value = in[0];1610
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/* accumulator */

MyData acc = local_histog[old_value ];

loop_histogram:1615

for (u_int16_t i=0 ; i<BLOCK ; i++)

{

/* load value */

MyData value = in[i];

1620

if (old_value == value) /* get the same value */

{

acc ++;

}

else /* different value */1625

{

local_histog[old_value] = acc;

acc = (local_histog[value] + 1);

}

1630

/* update the old value */

old_value = value;

} /* loop */

local_histog[old_value] = acc;1635

/* ************************************************************ */

/* copy local_histog to histog */

if (copy_out)1640

{

loop_copy:

for (u_int16_t i=0 ; i<BLOCK ; i++)

{

histog[i] = local_histog[i];1645

}

}

return;

}1650

/* ********************* VIVADO HLS REPORT ******************* */

/* Target Board: ZedBoard */

/* *********************************************************** */1655

/* DSP48E 0 used | 220 available - 0.0% utilization */

/* BRAM_18K 9 used | 280 available - 3.21% utilization */
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/* LUT 8372 used | 53200 available -15.91% utilization */

/* FF 5237 used | 106400 available - 5.04% utilization */

/* *********************************************************** */1660

Synthesizing the code listed in 15, adding a pipeline to the loop histogram, Vivado HLS issues a warning that

states that it is unable to enforce a carried dependence constrain between ”add” operation of variable acc (the operation

acc++) and ”store” operation of the same variable on local histog (the operation local histog[old value] = acc).

The conflict is shown in Figure 35.

Figure 35: Vivado HLS Analysis Perspective of the pipeline version of the ”general” histogram algorithm listed in the Listing 15. Red

indicates conflicts. Clicking the red cycles it is possible to see where the conflicts are.

However, looking at the code, these operations can never be performed in the same clock cycle because they are1665

in different branches of the if/else construct, and hence it is a false intra-dependence. Despite the simple algorithm,

this example shows that Vivado HLS cannot determine this property of the actual design without the addition of

programmer information. Using the dependence directive it is possible to inform the HLS tool about a particular

property of the code itself. We remind the reader that specifying a false dependency, when in fact the dependency is

not false, can result in incorrect hardware, therefore a careful analysis of the synthesized circuit is highly recommended.1670
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Data Type : int32

TIMING (clock cycles) HLS pragmas PL resources

Loop

latency

Iteration

latency

Initiation

interval

Trip

count
Optimization DSP48E BRAM 18K LUT FF

384 ∼512 3 ∼4 - 128 None 0.0% 3.21% 15.97% 5.03%

257 4 2 128 - pipeline II=1 0.0% 3.21% 16.08% 5.04%

129 3 1 128

- pipeline II=1

- dependence variable=local histog

inter RAW false

0.0% 3.57% 16.07% 5.0%

129 3 1 128

- pipeline II=1

- array partition

variable=local histog complete

0.0% 2.86% 20.62% 8.81%

Table 11: A comparison of timing and PL resource usage for integer data type using different HLS optimizations applied to the ”general”

histogram algorithm listed in 15. Timing refers to the loop histogram loop, while resource usage for the whole synthesized kernel.
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9. Roofline model

In this Section we describe how to measure the computing performance and the energy-efficiency to be expected

of an FPGA device. As a matter of fact, Astronomy and Astrophysics often rely on floating-point intensive HPC

workloads, so we want to provide a general method for estimating their performance as accelerators for real scientific

applications. The method we follow is based on the FER (FPGA Empirical Roofline) tool [3], developed within the1675

EuroExa project25, and avaible on GitHub26. FER allows to empirically estimate the maximum bandwidth between

the DRAM memory and the FPGA, as well as the maximum single- or double-precision computing throughtput of the

FPGA. At the moment, to do so, it streams an array of single- or double-precision elements into the FPGA, where

it performs a chain of subsequent Fused Multiply-Add (FMA) operations, one for each array element, copying back

the result in another array. The loop over array elements is pipelined reaching an II=1 and thus, once the pipeline1680

is filled, FER performs one read, one write and FLOP ELEM (defined by the programmer) FLOPs for each FPGA clock

cycle. Half of the FLOP ELEM will be multiplications and the other half additions. FER relies on OmpSs@FPGA, using the

docker image version 1.3.2 and Vivado 2017.3.1. We slightly change the FER source code to make it working with the

latest OmpSs@FPGA version 2.1.0, used in this technical report. As usual, our version of the FER code is available in the

GitHub repository associated with the technical report.1685

Moreover, we will use FER also to assess the energy-efficiency of the FPGA on the ZedBoard, using an external

power meter and thus obtaining the maximum reachable FLOP/Watt.

9.1. FPGA Empirical Roofline

FER is able to extract the floating-point throughput from an FPGA using its DSP48s. This synthetic benchmark

has the capability of tuning the computational intensity, i.e. the FLOPs/Byte ratio performed by the kernel, allowing1690

to find out the floating-point throughput (GFLOPs/sec) and the maximum memory bandwidth between the FPGA

and the host DRAM (GByte/sec).

Listing 16: The FER kernel function. For each input array element are computed (FLOP ELEM / 2) FMA operations, accounting for a

computational intensity of (FLOP ELEM / (2 * sizeof(MyData)).

/* ********* PARAMETERS **************** */

/* Data type */

typedef float MyData;1695

/* Number of floating -point operations */

#define FLOP_ELEM 2

/* ************************************* */

1700

/* ******* MACROS for Ops ************** */

#define REP2(S) S ; S

#define REP4(S) REP2(S); REP2(S)

25https://euroexa.eu
26https://baltig.infn.it/EuroEXA/FER
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#define REP8(S) REP4(S); REP4(S)

#define REP16(S) REP8(S); REP8(S)1705

#define REP32(S) REP16(S); REP16(S)

#define REP64(S) REP32(S); REP32(S)

#define SUM(a,b,c) ((a) = (b) + (c))

#define FMA(a,b,c) ((a) = ((a) * (b)) + (c))1710

/* ******************************************* */

#pragma omp target no_localmem_copies device(fpga)

#pragma omp task in([BSIZE]input) out([BSIZE]output)1715

void hw_kernel(const MyData *const __restrict__ input ,

MyData *const __restrict__ output)

{

main_loop:

for (u_int32_t i=0 ; i<DIM ; i++)1720

{

# pragma HLS pipeline II=1

const MyData alpha = 0.5;

1725

/* load element from DRAM to FPGA register */

const MyData elem = input[i];

MyData beta = 0.8;

1730

#if (FLOP_ELEM == 16) /* 16 FLOPs */

REP8(FMA(beta , elem , alpha));

#endif

#if (FLOP_ELEM == 32) /* 32 FLOPs */1735

REP16(FMA(beta , elem , alpha));

#endif

....

1740

/* store result */

output[i] = beta;

}

return;1745

}

The kernel is reported in Listing 16 (https://www.ict.inaf.it/gitlab/david.goz/oats-technical-report-ompss_

at_fpga.git). In the first #pragma omp directive targeting the FPGA device, we explicitly avoid data transfer with

the clause no localmem copies in order to directly access the host DRAM from the FPGA. During the kernel execu-

80

https://www.ict.inaf.it/gitlab/david.goz/oats-technical-report-ompss_at_fpga.git
https://www.ict.inaf.it/gitlab/david.goz/oats-technical-report-ompss_at_fpga.git
https://www.ict.inaf.it/gitlab/david.goz/oats-technical-report-ompss_at_fpga.git


tion, one element of the input array is read for each FPGA clock cycle (the main loop is pipelined), moved into the1750

FPGA, processed into a pipeline computing a chain of dependent fused multiply add operations and finally written

back to the DRAM into the output array. Once the pipeline is filled, for each clock cycle the FPGA is performing a

read and a write of one element, and FLOP ELEM floating-point operations (e.g. the computational intensity) concur-

rently. Combining this information with the kernel execution time, it it possible to infer the FLOPs/sec performance.

To obtain the maximum achievable performance it is enough to increase the value of the FLOP ELEM up to the point1755

at which the FPGA resources are not enough to synthesize a working bitstream.

Figure 36: Vivado HLS Resource analysis perspective of the FER kernel listed in the Listing 16 when single precision arithmetic

(sizeof(MyData) == 4) is used. The kernel is set to perform one FMA (FLOP ELEM == 2), so one fmul and one fadd. The first per-

forms the operation opfmul = (beta ∗ elem) taking 4 clock cycles, and the second performs the operation opfadd = (opfmul + alpha)

requiring 5 clock cycles.

9.2. Results

The Zynq-7020 (details in Section 6.5) that equips the ZedBoard is not suitable for real HPC workload because

it is meant as an educational/development kit, i.e. the board is ideal for rapid prototyping and proof-of-concept
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development like the FER tool. However we still use our FER tool to evaluate the maximum single-precision performance1760

of the ZedBoard at least, since double-precision arithmetic is actually resource-eager on such a device.

Figure 37: Experimental Roofline measure of the FPGA embedded on ZedBoard clocked at 100MHz. The maximum performance has been

reached using 100% of the available DSP48s, computing 44 FMAs (i.e. 88 FLOP) per element, in single-precision (i.e 32-bit word).

The experimental Roofline is plotted in Figure 37. Using 100% of the available DSP48s on the FPGA, 0.72

GFLOPs/sec have been reached in single-precision, computing 44 FMAs operations on each element and processing

one element per FPGA clock cycle. Concerning the bandwidth, 0.065 GB/sec of bidirectional bandwidth between the

host DRAM and the FPGA have been reached, moving 32-bit element in and 32-bit element out.1765

The reader might argue that the expected bidirectional bandwidth should be 0.8 GB/sec, because 8 byte (2 x 32-bit

word) are moved per clock cycle at 100MHz (when the pipeline is filled). Experimentally a value lower of an order of

magnitude has been found. To investigate this, we run the FER tool without computing any FMA operation (it is

enough to set the macro #define FLOP ELEM 0 in the header file parameters.h), so that the kernel simply performs a

pipelined copy of the input array into the output one, achieving the same bidirectional bandwidth (i.e. '0.06 GB/sec)1770

for both single and double-precision arithmetic.

From the plot in Figure 37 we can derive the machine balance, i.e. the ratio MB = C/B ' 11 FLOPs/byte,
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where C = 0.72 GFLOPs/s is the maximum computational performance, and B = 0.065 Gbyte/s the maximum

memory bandwidth. The Roofline assumes that a computational task performs a number of operations O on D data

items exchanged with memory. The corresponding ratio I = O/D is known as the arithmetic intensity. Kernel with1775

arithmetic intensity lower than the machine balance are called memory-bound, and compute-bound otherwise.

9.3. Energy

A current sense resistor, which is installed on the ZedBoard, is used to calculate the power consumed by the

ZedBoard while executing the designed application. The shunt-resistor is a 10mΩ series resistor with the board’s

input supply line, and this resistor can be used to measure the entire board’s current draw using the rule of Ohm.

Since the voltage of the power supply is 12V , the board’s power consumption is provided by the formula:

P =
Vmeasured

10mΩ
× 12V (26)

For our measurements we use the Benchtop Multimeter, Hewlett Packard model 34401A. After booting up the

board, we measure the power consumption both in idle and during the execution of the FER benchmark, so we have

been able to compute the average power drain in Watt at a sustained GFLOP/s rate, allowing us to compute the1780

GFLOPs/Watt metric. In particular, we measure an average power drain in idle of 3.28W and running the FER

benchmark of 3.47W performing 88 FLOP (i.e 44 FMAs), yielding an energy-efficiency of ' 3.8 GFLOPs/W in

single-precision for the Artix-7 FPGA hosted on the ZedBoard.

Our FER synthetic benchmark allows the user to set the amount of FLOPs at compile time. When the number of

FLOPs is set to zero, the kernel performs only the copy of the input array into the output array for all elements using1785

a pipeline, allowing us to estimate the power drain for the data traffic from/to the main (host) memory. We measure

' 0.5 GBytes/W.

DSPs usage

[%]
FLOP per Elem.

Performance

[GFLOP/s] - [GByte/s]

Avg Power

(without idle)

[Watt]

Energy-efficiency

[GFLOPs/W] - [GBytes/W]

0.0 0 0 - 0.065 0.13 0 - 0.5

100 88 0.72 - 0.065 0.19 3.79 - 0.34

Table 12: Results concerning the execution of the FER synthetic benchmark using single-precision arithmetic, running on the Artix-7

FPGA hosted by the ZedBoard. Average power drain is reported after subtracting the idle power drain.

For completeness, we investigate also the power-efficiency using double-precision arithmetic. At most 12 double-

precision FMAs can be synthesized and in particular we measure a power draw of 0.26W (without idle) and a power-

efficiency of 0.058 GFLOPs/W, accordingly. In comparison, 12 FMAs for single-precision floating-point operations1790

result in a power draw of 0.18W (without idle) and a power-efficiency of 0.16 GFLOPs/W. This highlight the fact that

this hardware is not only more efficient from the performance point of view in computing single-precision operations

(≈ 2× faster), but is also much more energy-efficient in this condition (≈ 2.7× more energy-efficient).
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10. Conclusions

In this technical report we show how to use the directive based OmpSs@FPGA high-level programming framework,1795

developed at the Barcelona Supercomputing Center, to enable FPGA-accelerated computing. We show how, thanks

to the High Level Synthesis approach, FPGAs can be programmed using high level languages such as C/C++, highly

reducing the programming effort required, allowing a faster design space exploration in terms of FPGA resource-usage

and performance, and a much higher software portability. A large part of this technical report has been devoted

to present algorithm case studies, which allow the reader to understand in detail how to re-engineer widely-applied1800

algorithms to accomplish the goals of the designer.

In further coming technical report we will show more advanced features of OmpSs@FPGA framework and techniques

to profile the target application in order to gather information regarding the application performance on the FPGA.
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12. Appendix: Compile OmpSs@FPGA programs

In this Appendix, we focus on the specific options of Mercurium to generate the bitstreams, hardware instrumen-

tation and binaries.

To compile OmpSs@FPGA programs the user should follow the general OmpSs compilation procedure using the1810

Mercurium compiler. Details are provided in the OmpSs User Guide27.

12.1. Bitstreams

To generate the bitstream the user must enable the bitstream generation in the Mercurium compiler, using the

--bitstream-generation flag and provide it the FPGA linker (aka AIT) flags with --Wf option.

For example, to compile an application, in debug mode, for the ZedBoard, with a target frequency of 100Mhz, the1815

user can use the following command:

$ arm-linux-gnueabihf-fpgacc –debug –ompss –bitstream-generation <source code.c> -o

<executable name debug> –Wf, ”–board=zedboard, –clock=100, –name=<executable name debug>,

–hwruntime=som”

12.2. Hardware instrumentation

The HW instrumentation can be enable using the flag --instrument (or --instrumentation). The HW instru-1820

mentation can be generated (it requires FPGA resources) but not used when running the application. The application

binary also has to be compiled with this flag.

For example, the previous compilation with the instrumentation enable becomes:

$ arm-linux-gnueabihf-fpgacc –instrument –debug –ompss –bitstream-generation <source code.c> -o

<executable name debug> –Wf, ”–board=zedboard, –clock=100, –name=<executable name debug>, –

hwruntime=som”

1825

12.3. Binaries

Two Mercurium front-ends for the FPGA devices are available:

• fpgacc for C applications;

• fpgacxx for C++ applications.

If the user modifies only the host code (i.e. without change the source code issued to the FPGA) and a valid1830

bitstream is already available, it is actually enough to recompile the application without launch the AIT, which is time

consuming. This is done recompiling the application without using the --bitstream-generation flag. It is worth

noticing that the flag --ompss must be used otherwise the #pragma targeting the FPGA will be ignored, thus the

kernel will be run on the CPU.

27https://pm.bsc.es/ftp/ompss/doc/user-guide/compile-programs.html
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