
VOSpace Backend Service
Developers Guide 1.0

oats_vospace-
backend_devel_guide

INAF-OATs Technical Report 238

Sara Bertocco

Giuliano Taffoni

oats_vospace-backend_devel_guide

VOSpace Backend Service Developers Guide 1.0 oats_vospace-
backend_devel_guide
INAF-OATs Technical Report 238
Edition 1

Author Sara Bertocco bertocco@oats.inaf.it
Author Giuliano Taffoni taffoni@oats.inaf.it
This guide gives software description and some development hints to meke easier to developers to
add new storage solutions to their VOSpace service.

mailto:bertocco@oats.inaf.it
mailto:taffoni@oats.inaf.it

iii

1. Introduction 1

2. Software description 3
2.1. Development tree ... 3
2.2. Plug-in architecture ... 3
2.3. General functionality description .. 6

3. How to add a new storage solution support 7
3.1. How to write a new plug-in .. 7

A. Revision History 9

Index 11

iv

Chapter 1.

1

Introduction
The "VOSpace, Version 2.1"1 says: "A VOSpace web service is an access point for a distributed
storage network. Through this access point, a client can:

• add or delete data objects

• manipulate metadata for the data objects

• obtain URIs through which the content of the data objects can be accessed

VOSpace does not define how the data is stored or transferred, only the control messages to gain
access. Thus, the VOSpace interface can readily be added to an existing storage system. When we
speak of “a VOSpace”, we mean the arrangement of data accessible through one particular VOSpace
service."

The vospace-backend is a storage service management to integrate a VOSpace interface
implementation with a storage solution. This software module persists the information linking a
VOSpace Node Identifier with a vospace backend stored file, so it is able to return URIs to access the
content of the data objects.

The storage solution can be changed thanks to a plug-in architecture allowing to plug-in at run time
different storage solutions simply implementing an abstract java class.

The service requires an SQL Resource DataBase Management Service (RDBMS) as default built-in
persistence layer.

vospace-backend provides a RESTful interface.

1 http://www.ivoa.net/documents/VOSpace/20150601/VOSpace.pdf

http://www.ivoa.net/documents/VOSpace/20150601/VOSpace.pdf
http://www.ivoa.net/documents/VOSpace/20150601/VOSpace.pdf

2

Chapter 2.

3

Software description
This software implements CADC interface ca/nrc/cadc/vos/server/transfers/TransferGenerator.java
which means substantially imlements the function List<URL> getURLs(VOSURI target, Protocol
protocol, View view, Job job, List<Parameter> additionalParams) throws FileNotFoundException,
TransientException; the function return, in the most generale case, a list of URLs to access data for
the given transfer request information. In the current implementation, a single URL is returned built as
Service-base-URL-/OSURI of data to access/signature/jobid

2.1. Development tree

2.2. Plug-in architecture
The swap between different storage base implementations is realized using a plugin factory.

Steps to realize a plugin factory:

1. define a Java interface for the methods whose implementation has to be swapped.

The oats-vospace-backend implementation minimizes the code to write to add a new storage
method using an interface with only two functions: one to store the data and one to retrieve the
data. All the common management work is performed in an abstract class implementing the public
interface. A new storage supporting object must implement the interface and extend the abstract
class.

2. define the concrete implementation(s) of that interface.

In the current implementation of oats-vospace-backend is available
a file system posix based storage implemented in the class
it.inaf.oats.vospacebackend.implementation.VOSpaceBackPosix

Chapter 2. Software description

4

3. create a plugin factory class with a method to return one of the concrete implementations, as
defined by a configuration setting.

In oats-vospace-backend, the configuration is defined in the file VOSpace.properties where
the parameter it.inaf.oats.vospacebackend.implementation.VOSpaceBackendImpl
defines the concrete inmlementation to be used (for example
it.inaf.oats.vospacebackend.implementation.VOSpaceBackPosix). The file must
be located in the subdirectory config of the home directory of the user running the service. The
plugin factory retuns the concrete implementation configured in VOSpace.properties.

Plug-in architecture

5

Chapter 2. Software description

6

2.3. General functionality description
This paragraph is a general description of the functionality of the i vospace-backend software module.

It is a web service, based on the RESTful architecture, realized using the Restlet Framework1 At
present, the VOSpaceBackendResource implements the GET and PUT operations only.

The functionality of PUT operation is based on the following steps:

• Reads the request input parameters:

• "jobid"

• "parameters" contains the encoded vosuri of the VOSpace Node relative to the operation. This
parameter has to be decoded. It is originally encoded for security reasons.

• Downloads the input file associated with the request putting it in a temporary area with a unique id
as name and calculates its md5 checksum

• Stores the received file:

• initializes the Node metadata in the VOSpace interface backend

• creates an entry in the vospace-backend database to store the relation between the Node
identifier and the stored file identifier

• move the received file from the temporary area to the final storage area. This is the only operation
specific of the adopted storage solution

• Updates the job status.

1 https://restlet.com/open-source

https://restlet.com/open-source
https://restlet.com/open-source

Chapter 3.

7

How to add a new storage solution
support
The vospace-backend software is designed to be extended to support more storage solutions
implementing new plug-ins.

This chapter explains how to write a new plug-in.

3.1. How to write a new plug-in
Reading the architecture, it is clear that a new plug-in is a java class extending
VOSpaceBackend.java, which means implementing the two methods of the
VOSpaceBackendInterface.java:

public void fileFromTmpToFinalStorageArea(String storedFileID, String md5_sum)
public String fileFromStorageAreaToTmp(String vosuri, String storedFileID)

8

9

Appendix A. Revision History
Revision 1.0-0 Fri March 03 2017 Sara Bertocco

sara.bertocco@oats.inaf.it

Initial creation by publican

mailto:sara.bertocco@oats.inaf.it

10

11

Index

12

	oats_vospace-backend_devel_guide
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Software description
	2.1. Development tree
	2.2. Plug-in architecture
	2.3. General functionality description

	Chapter 3. How to add a new storage solution support
	3.1. How to write a new plug-in

	Appendix A. Revision History
	Index

