Commit 81d268df authored by Marco Frailis's avatar Marco Frailis

Adding jupyter notebook with examples

parent 283c6da9
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## HDF5 Datasets\n",
"\n",
"In the following we show some examples on how to create Datasets in HDF5 (whith h5py) and update values\n",
"\n",
"### First dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import h5py\n",
"\n",
"from timeit import timeit # To measure execution time\n",
"import numpy as np # this is the main python numerical library\n",
"\n",
"f = h5py.File(\"testdata.hdf5\",'w')\n",
"\n",
"# We create a test 2-d array filled with 1s and with 10 rows and 6 columns\n",
"data = np.ones((10, 6))\n",
"\n",
"f[\"dataset_one\"] = data\n",
"\n",
"# We now retrieve the dataset from file\n",
"dset = f[\"dataset_one\"]\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#The following instructions show some dataset metadata\n",
"print(dset)\n",
"print(dset.dtype)\n",
"print(dset.shape)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Dataset slicing\n",
"\n",
"Datasets provide analogous slicing operations as numpy arrays (with h5py). But these selections are translated by h5py to portion of the dataset and then HDF5 read the data form \"disk\". Slicing into a dataset object returns a NumpPy array.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"out = dset[...]\n",
"\n",
"print(out)\n",
"type(out)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dset[1:5, 1] = 0.0\n",
"dset[...]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# random 2d distribution\n",
"data = np.random.rand(15, 10)*2 - 1\n",
"\n",
"dset = f.create_dataset('random', data=data)\n",
"\n",
"# print the first 5 even rows and the first two columns\n",
"out = dset[0:10:2, :2]\n",
"print(out)\n",
"\n",
"# clipping to zero all negative values\n",
"dset[data<0] = 0"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Resizable datasets\n",
"\n",
"If we don't know in advance the dataset size and we need to append new data several times, we have to create a resizable dataset, then we have to append data in a scalable manner"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dset = f.create_dataset('dataset_two', (1,1000), dtype=np.float32, \n",
" maxshape=(None, 1000))\n",
"\n",
"a = np.ones((1000,1000))\n",
"\n",
"num_rows = dset.shape[0]\n",
"dset.resize((num_rows+a.shape[0], 1000))\n",
"\n",
"for row in a:\n",
" dset[num_rows,:] = row\n",
" num_rows +=1\n",
"\n",
"print(dset[1000,:20])\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Groups\n",
"\n",
"We can directly create nested groups with a single instruction. For instance to create the group 'nisp_frame', then the subgroup 'detectors' and at last its child group 'det11', we can use the instruction below."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"grp = f.create_group('nisp_frame/detectors/det11')\n",
"grp['sci_image'] = np.zeros((2040,2040))\n",
"\n",
"print(grp.name) # the group name property\n",
"print(grp.parent) # the parent group property\n",
"print(grp.file) # the file property\n",
"print(grp) # prints some group information. It has one member, the dataset"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Attributes\n",
"\n",
"Attributes can be defined inside a group or in a dataset. Both have the **.attrs** property to access an attribute or define new attributes. With h5py, the attribute type is inferred from the passed value, but it is also possible to explicitly assign a type."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"grp = f['nisp_frame']\n",
"grp.attrs['telescope'] = 'Euclid'\n",
"grp.attrs['instrument'] = 'NISP'\n",
"grp.attrs['pointing'] = np.array([8.48223045516, -20.4610801911, 64.8793517547])\n",
"grp.attrs.create('detector_id', '11', dtype=\"|S2\")\n",
"\n",
"print(grp.attrs['pointing'])\n",
"print(grp.attrs['detector_id'])\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"f.close()\n",
"!h5ls -vlr testdata.hdf5"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tables (compound types)\n",
"\n",
"Tables can be stored as datasets where the elements (rows) have the same compound type. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"f = h5py.File(\"testdata.hdf5\")\n",
"dt = np.dtype([('source_id', np.uint32), ('ra', np.float32), ('dec', np.float32), ('magnitude', np.float64)])\n",
"\n",
"grp = f.create_group('source_catalog/det11')\n",
"dset = grp.create_dataset('star_catalog', (100,), dtype=dt)\n",
"\n",
"dset['source_id', 0] = 1\n",
"print(dset['source_id', 'ra', :20])\n",
"print(dset[0])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## References and Region references\n",
"\n",
"In the following instruction we create a reference from the detector 11 scientific image to the corresponding star catalog, which is stored in the same file"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sci_image = f['/nisp_frame/detectors/det11/sci_image']\n",
"sci_image.attrs['star_catalog'] = dset.ref\n",
"cat_ref = sci_image.attrs['star_catalog']\n",
"\n",
"print(cat_ref)\n",
"dset = f[cat_ref]\n",
"print(dset[0])\n",
"dt = h5py.special_dtype(ref=h5py.Reference)\n",
"# the above data type dt can be used to create a dataset of references or just an attribute"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"roi = sci_image.regionref[15:20, 36:78]\n",
"sci_image[roi]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Chuncking"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dset = f.create_dataset('chunked', (10,2048,2048), dtype=np.uint16, chunks=(1,64,64))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dset = f.require_dataset('auto_chunked', (2048,2048), dtype=np.float32, compression=\"gzip\")\n",
"print(dset.compression)\n",
"print(dset.compression_opts)\n",
"print(dset.chunks)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment